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ABSTRACT 

Using large language models (LLMs), computers are able to generate a written text in response to 

a user request.  As this pervasive technology can be applied in numerous contexts, this study anal-

yses the written style of one LLM called GPT developed by OpenAI by comparing its generated 

speeches with those of the recent US presidents.  To achieve this objective, the State of the Union 

(SOTU) addresses written by Reagan to Biden are contrasted to those produced by both GPT-3.5 

and GPT-4.o versions.  Compared to US presidents, GPT tends to overuse the lemma “we” and 

produce shorter messages with, on average, longer sentences.  Moreover, GPT opts for an optimistic 

tone, choosing more often for political (e.g., president, Congress), symbolic (e.g., freedom), and 

abstract terms (e.g., freedom).  Even when imposing an author’s style to GPT, the resulting speech 

remains distinct from addresses written by the target author.  Finally, the two GPT versions present 

distinct characteristics, but both appear overall dissimilar to true presidential messages. 

Keywords: political speeches, large language models, stylometry, ChatGPT, authorship.  

1 Introduction 

With the development of large language models (LLMs) (Zhao et al., 2023), generative AI demonstrates 

its capability to generate a short text in response to a user request.  Currently, such applications are 

freely available and can help users produce various types of writing (e.g., e-mail, CV, short letter, etc.).  

From this perspective, this study investigates the writing style of GPT developed by OpenAI when 

asked to generate State of the Union addresses for a president.  Annually expressed in front of Congress, 

these speeches explain the world situation and political agenda of the occupant of the White House.  

The main objective is to inform and persuade the audience that the propositions and actions of the 

president are the most appropriate.  To reach such an objective, the style and rhetoric play an important 

role in reinforcing the president’s words.   

Based on recent developments in automated text analysis designed by communication and psychologi-

cal scholars (Jordan, 2022), this study analyses the style and rhetoric of six US presidents (Reagan, 

Clinton, Bush, Obama, Trump, and Biden) as well as that of two GPT versions (GPT-3.5 and GPT-4.o).  

In this study, rhetoric is defined as the art of effective and persuasive speaking, and the way to adopt a 

https://doi.org/10.53482/2025_58_422
https://orcid.org/0000-0002-4486-0067
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tone to motivate an audience.  An author’s style is evaluated through studying frequent forms employed 

to support his/her communication objective (Biber & Conrad, 2009).   

To author a SOTU speech, a chief ghostwriter collaborates more or less closely with the president1.  

Could we employ GPT to achieve a similar objective and expect that it could adopt a political tone and 

style of the current occupant of the White House?  In the end, can we still discriminate between the 

generated address and the real one?  If so, what are the stylistic characteristics that differ between the 

two speeches?  Moreover, what are the rhetoric features that can be pertinent to discriminate between 

the addresses written by several presidents (Reagan, Clinton, Bush, Obama, Trump, and Biden)?  Ad-

ditionally, can we observe distinct aspects between the two GPT versions and, if so, which one is the 

best to write a political message? 

To address these questions, this article is organised as follows.  The first section presents some related 

work, while Section 3 describes the corpus used in our experiments.  Section 4 analyses some stylistic 

features by comparing those in both GPT versions to those occurring in speeches written by US 

presidents.  Additional experiments focusing on psychological and emotional characteristics are 

depicted in Section 5, while the next evaluates the global similarity between each president and the two 

GPT versions.  Finally, a conclusion reports the main findings of this study.   

2 State of the Art 

Numerous studies have been published on authorship attribution and on recognising author de-

mographics characteristics (e.g., gender, age, social status, native language, etc.) (Kreuz, 2023).  Other 

stylometry studies have additionally been performed on the detection of plagiarism or fake documents, 

the identification of suspects in criminology (Olsson, 2018), the determination of text genre, and even 

the dating of a document.  To resolve these questions, various natural language processing models have 

been applied by scientists from different domains such as computer science (Savoy, 2020), (Karsdorp 

et al., 2021), linguistics (Crystal, 2019), (Yule, 2020), psychology (Pennebaker et al., 2014), (Jordan, 

2022) and communication studies (Hart et al., 2013), (Hart, 2020).   

The main objective of this study is to analyse the style and rhetoric of true political speeches and to 

compare them with those automatically generated by GPT.  This emerging technology is based on LLM 

(large language model) technology grounded on a deep learning architecture (Goodfellow et al., 2016), 

which is based on a sequence of transformers with an attention mechanism (Vaswani et al. 2017).  The 

most important notion to understand LLM is the following: given a short sequence of tokens (e.g., 

words or punctuation symbols), the computer is able to automatically supply the next token.  More 

                                                      

1 For example, at https://www.youtube.com/watch?v=zFbaesLEa4g, Obama’s ghostwriter, J. Favreau, comments 

his job.   
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precisely, knowing four tokens, the model must first determine the list of possible next tokens to com-

plete the given sequence (Wolfram, 2023).  For example, after the chain “the president of the” the 

computer, based on the training documents, can define a list of the next occurring token, such as United, 

Philippines, Senate, US, USA, UK, republic, Ukraine, and so forth.  

From this list, and depending on some parameters, the system can then select the most probable token 

(in our case, “United”) or based on a uniform distribution, one over the top k ranked tokens (e.g., “Sen-

ate”), or randomly depending on their respective probabilities of occurrence in the training texts (e.g., 

“US”).  This non-deterministic process guarantees that the same request will produce distinct messages.  

Common to all LLMs, GPT may include hallucinations in its answers (namely, incorrect information).  

In our previous example, the sequence “the president of the UK” should be replaced by “the Prime 

Minister of the UK”).  Moreover, the specification of the sources exploited to produce the text remains 

unknown2.   

As previously mentioned, the main target application of such LLMs is to generate a short text in the 

context of a dialogue.  To analyse such automatically generated texts, different studies expose the ef-

fectiveness of several learning strategies capable of discriminating between answers generated by GPT-

3.5 and answers written by human beings (Guo et al., 2023).  Based on a classifier trained on a given 

domain (e.g., RoBERTa), the recognition rate is rather high (around 95% to 98%).  Such effectiveness 

is also obtained when the target language is not English (e.g., French (Antoun et al., 2023)), or when it 

is Japanese (Mizumoto et al., 2024).  Such a high degree could be reduced when faced with a new and 

unknown domain or when substituting tokens by misspelled words (in such cases, the achieved accuracy 

rate varies from 28% to 60%).  Of course, the message must include at least 1,000 letters to allow the 

detection system to reach such a small error rate.   

With a similar objective, the CLEF-PAN 2019 international evaluation campaign evaluated different 

systems to automatically detect whether a set of tweets was generated by bots or by humans (Daelemans 

et al., 2019).  In this case as well, the effectiveness was rather high (between 93% to 95% for the best 

approaches).  However, the tweets written by bots were not produced by a LLM, but corresponded to 

messages either containing a well-known citation, a passage of the Bible, or text corresponding to a 

predefined pattern (e.g., list of positions available in a large company).   

3 Corpus Overview 

To ground our conclusions on a solid basis, the same text genre has been selected: namely, written 

speeches given in the same context, to achieve similar objectives, and written in the same time period.  

                                                      

2 The training sample employed by GPT is not precisely known and one might assume that many presidential 

speeches have been included. 
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To compare the style of recent US presidents with messages created by a machine, we queried the GPT 

API (Application Programming Interface) to generate the State of the Union (SOTU) addresses for six 

presidents, namely Reagan, Clinton, Bush, Obama, Trump, and Biden.  For each US leader, only the 

SOTU addresses were taken into consideration.  In addition, two versions of GPT were used, namely 

version 3.5 and 4.o (or 4.omni).  As shown in Table 1, the number of SOTU speeches varied from three 

(Biden) to eight (Clinton, Bush, Obama).  

 

Table 1:  Some statistics on our American corpus. 

 Presidency Number Tokens Types Mean length 

Reagan-GPT-3.5  70 29,381 1,074 414.7 

Clinton-GPT-3.5  80 42,125 1,385 528.0 

Bush-GPT-3.5  70 35,756 1,254 504.9 

Obama-GPT-3.5  80 32,224 1,340 539.7 

Trump-GPT-3.5  40 19,616 1,033 484.5 

Biden-GPT-3.5  30 15,282 977 489.3 

Reagan-GPT-4.o  70 45,651 1,221 643.1 

Clinton-GPT-4.o  80 55,085 1,275 680.8 

Bush-GPT-4.o  70 45,665 1,277 643.9 

Obama-GPT-4.o  80 52,557 1,414 649.2 

Trump-GPT-4.o  40 25,049 1,027 614.4 

Biden-GPT-4.o  30 19,879 941 640.1 

R. Reagan 1981–1989 7 32,490 3,384 3,975.4 

B. Clinton 1993–2000 8 59,705 3,835 6,520.5 

W.G. Bush 2001–2008 8 40,532 3,514 4,349.5 

B. Obama 2009–2016 8 53,777 3,902 6,021.0 

D. Trump 2017–2020 4 22,189 3,200 3,973.8 

J. Biden 2021–2024 3 25,598 2,912 5,778.0 

 

To help both GPT versions in their generative process3, the true SOTU address of the corresponding 

year was included in the prompt.  In addition, a short list of possible topics was inserted (e.g., 

“deregulation, free market, reduced taxes, small government, education, middle-class, security, …”).  

Finally, the prompt4 specified the president’s name and year to obtain a message written according to 

the style of a specified leader.  For example, for 1982, the prompt included the following sentences:  

                                                      

3 The training sample used by GPT is unknown but one can assume that many presidential speeches have been 

included.  However, those messages, if appearing in the training set, are employed to define the occurrence prob-

ability of a token, given the four previous ones, and not to identify a presidential style.   

4 All the prompts are available at https://drive.switch.ch/index.php/s/pzkraoobJWu7xqP.  Moreover, the parame-

ters have been fixed as follows: temperature=0.5, frequency_penalty=0, presence_penality=0, top_p=0.4, max_to-

kens=32768.   
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“I'm Ronald Reagan, President of the United States of America.  I need to write my SOTU 

speech.  Can you write a SOTU speech to be presented in the front of the Congress in January 

1982.…” 

As GPT generates relatively short messages, ten different versions for each speech have been generated 

for both versions.  As shown in the Appendix, this limit of ten seems problematic for OpenAI, particu-

larly when generating political speeches.   

Table 1 depicts a general overview of our political corpus.  The third column indicates the number of 

speeches.  The total number of tokens (labelled “Tokens”) and the number of distinct words (labelled 

“Types”) are reported in the next columns.  These values are computed without counting the numbers 

and the punctuation symbols.   

The last column shows the mean number of tokens per speech.  The average size of the GPT versions 

is roughly ten times smaller than the real ones.  When comparing both GPT versions, the overall mean 

length is 493.5 for GPT-3.5 and 645.3 with GPT-4.o, a significant difference (bilateral t-test, signifi-

cance level 1%).  In total, this corpus contains 652,561 tokens, with 418,270 created by both GPT 

versions and 234,291 belonging to true SOTU addresses.  

4 Stylometric Analysis 

As a first stylometric measure, one can focus on the language complexity that all political leaders tend 

to reduce.  For example, L. B. Johnson (presidency: 1963–1969) specifies to his ghostwriters, “I want 

four-letter words, and I want four sentences to the paragraph.” (Sherrill, 1967). The complexity of the 

language could be measured by the mean number of letters per words.  In this case, the larger the mean, 

the higher the language complexity.   

As an additional characteristic, we count the percentage of words composed of six letters or more, 

defined as big words (BW) in the English language.  We observe, for example, that depending of the 

length of words, some are easier to understand than others.  It is the difference between “ads” and 

“advertisements”, for example, or “desks” and “furniture”.  Such a relationship between complexity 

and word length is clearly established: 

“One finding of cognitive science is that words have the most powerful effect on our minds 

when they are simple.  The technical term is basic level.  Basic-level words tend to be short. … 

Basic-level words are easily remembered; those messages will be best re-called that use basic-

level language.” (Lakoff & Wehling, 2012) 

Finally, we evaluate the mean sentence length (MSL).  It has been observed that long sentences tend to 

render the speech more complex to understand.  Table 2 depicts these three measurements individually 

for each president, and globally for both GPT versions.  Moreover, in the last row, the average over the 
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six presidents is shown by concatenating all their SOTU addresses.  In this table, the largest values are 

presented in bold and the smallest in italics.  

According to values shown in Table 2, GPT-3.5 presents the language with the highest complexity on 

the three measurements.  On the other hand, Biden presents both the smallest mean of letters per word 

and the smallest MSL.  Between the two GPT versions, we observe that version 4.o clearly reduces the 

mean word size and the percentage of BW.  Both values are still higher than the mean value over the 

six presidents (4.85 vs. 4.44, and 37.8% vs. 28.7%).  The MSL of GPT-4.o corresponds clearly to pos-

sible presidential speech (19.95 vs. 19.45).   

 

Table 2:  Statistics on three language complexity measurements. 

 Mean word length Big words Mean sentence length 

GPT-3.5 5.07 40.11% 21.56 

GPT-4.o 4.85† 37.80%† 19.95† 

Reagan 4.49†‡ 29.34%†‡ 21.45‡ 

 
Clinton 4.34†‡ 26.79%†‡ 21.33‡ 

Bush 4.50†‡ 30.13%†‡ 20.07† 

Obama 4.31†‡ 25.94%†‡ 

 
19.72† 

Trump 4.55†‡ 30.74%†‡ 17.73†‡ 

Biden 4.29†‡ 25.95%†‡ 15.72†‡ 

Presidents 4.44†‡ 28.70%†‡ 19.45†‡ 

 

To statistically determine whether a given mean could be viewed as different than that produced by 

GPT-3.5, a bilateral t-test (Conover, 1990) has been applied with the null hypothesis H0 specifying that 

both population means are equal.  For example, in Table 2 GPT-3.5 produces an average word length 

of 5.07 letters.  Reagan pronounces on average 4.49 characters per word.  This difference 

(5.07 – 4.49 = 0.58) must be viewed as statistically significant (significance level  = 1%), and this 

statistical significance is indicated by a single cross (†).  Moreover, GPT-4.o presents a mean value of 

4.85.  This difference, compared with Reagan’s mean, is also statistically significant (significance level 

 = 1%), and is denoted by a double cross (‡).  With the BW values, the proportion test (Conover, 1990) 

has been applied instead of the t-test with the same significance level.   

When comparing the two GPT versions, Table 2 shows that for the three measurements, GPT-4.o results 

in a lower language complexity, and the differences are always statistically significant compared to 

GPT-3.5.  The newest version presents a reduced language complexity, closer but not similar to true 

presidents.  As displayed in Table 2, the differences with GPT-3.5 are always statistically significant, 

as well as with the mean over all presidents.  When comparing with GPT-4.o, the differences are usually 

always statistically significant.   
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When analysing a written style, the words can be divided into content and function terms with nouns, 

main verbs, adjectives and adverbs belonging to the first class.  Function (or glue) words corresponding 

to pronouns, articles, prepositions, auxiliary verbs and conjunctions are more frequent and tend to re-

flect some stylistic characteristics.  In particular, some stylistic and psychological traits of the author 

can be derived by analysing the relative frequencies of pronouns (Pennebaker, 2011; Kacewicz et al., 

2014).   

In this regard, the occurrence frequencies of personal and impersonal pronouns (e.g., it, that) (denoted 

Ipron5) are displayed in Table 3.  The last row shows the percentage of pronouns when concatenating 

all presidential speeches and can be viewed as a mean usage for a president in power.  As for the pre-

vious table, the largest values appear in bold and the smallest in italics.  In addition, the proportion test 

has been applied with significant difference ( = 1%), denoted by † over GPT-3.5 or by ‡ over GPT-

4.o.   

 

Table 3:  Frequency of occurrence of pronouns. 

 Self We You She/he They Ipron 

GPT-3.5 1.05% 6.93% 0.56% 0.00% 0.77% 3.59% 

GPT-4.o 0.68%† 8.30%† 0.46%† 0.00% 0.58%† 3.57% 

Reagan 1.03%‡ 4.25%†‡ 0.50% 0.23%†‡ 0.84%‡ 4.42%†‡ 

Clinton 1.55%†‡ 4.45%†‡ 0.77%†‡ 0.33%†‡ 1.31%†‡ 4.67%†‡ 

Bush 0.96%‡ 4.11%†‡ 0.64%†‡ 0.29%†‡ 1.18%†‡ 3.69% 

Obama 1.32%†‡ 4.28%†‡ 0.55%‡ 0.41%†‡ 1.12%†‡ 5.64%†‡ 

Trump 1.16%‡ 4.17%†‡ 0.80%†‡ 0.90%†‡ 0.93%†‡ 3.73% 

Biden 1.98%†‡ 3.33%†‡ 1.37%†‡ 0.64%‡ 1.26%†‡ 4.65%†‡ 

Presidents 1.20%†‡ 4.22%†‡ 0.67%†‡ 0.41%†‡ 1.04%†‡ 4.51%†‡ 

 

With the Self (I, me, mine, myself) category, GPT-4.o displays the smallest proportion of I-words while 

version 3.5 exposes a value close to that of some presidents (e.g., Reagan, Bush, or Trump).  For a 

leader in an electoral campaign, a large proportion of Self corresponds to an efficient and successful 

communication strategy.  After all, an election is the process of choosing between two candidates (e.g., 

US, Canada, France) (Labbé & Monière, 2008), (Savoy, 2018).   

The use of we-words (we, us, our, ourselves) appear as a way to move from an individual point of view 

to a collective one, with a solidarity aspect.  From a political communication point of view, this is a 

significant characteristic.  The lemma ‘we’ is common to all political leaders in power.  This pronoun 

has the advantage of being ambiguous; we are never sure who is behind the ‘we’.  Is it the president 

                                                      

5 The term indicating a category is displayed in italics. 



Savoy How effective is OpenAI to write speeches 

Glottometrics 58, 2025   8 

 

and his cabinet, the Congress, or more generally, the president and the people listening to the speech? 

In this last case, the speaker also wants to establish a relationship with the audience, usually to involve 

them in the proposed solution.  As shown in Table 3, this pronoun is the most frequently employed by 

all presidents.  Both versions of GPT overused it, and the proportion differences with all presidents are 

significant.   

As shown in Table 3, GPT avoids using other personal pronouns.  For GPT-4.o, those percentages are 

the lowest over all rows.  We can explain these low rates by the difficulty of establishing the right 

reference between the referent and the pronoun.  This is also true of the impersonal pronouns employed 

less frequently by the two GPT versions.  Another finding is the absence of the third singular personal 

pronouns with GPT.  More precisely, the word ‘she’ never appears under GPT’s pen.   

When analysing the differences between presidents, we observe that Biden employs the lemma ‘we’ 

less frequently, but presents the highest intensity in the categories of Self and You.  This choice denotes 

the willingness to establish a relationship between the speaker and the audience.  These differences 

characterise Biden’s voice as distinct from those of the other occupants of the White House. 

When evaluating two or three personal pronouns, some psychological traits about the author can be 

perceived (Kacewicz et al., 2014).  People with higher status consistently use fewer first-person singular 

pronouns, and they use more first-person plural and second-person pronouns.  The power language6 is 

associated with attentional biases; higher status is linked with other-focus, whereas lower rank is linked 

with self-focus (Kacewicz et al., 2014), (Pennebaker, 2011).  According to this perspective, both GPT 

versions appear to adopt a high leader status with a high frequency of We and You, and a low percentage 

of Self (e.g., GPT4.o: 8.3% + 0.46% – 0.68% = 8.08%).  Among presidents, the combined frequency of 

the categories We + You - Self indicates that Trump (3.81%) and Bush (3.79%) embrace a higher social 

status than the other presidents, with the lowest value associated with Biden (2.71%).   

5 Psychological and Emotional Analysis 

A psychological and emotional analysis of political speeches can be grounded on LIWC7. This text-

based analysis system is built around several wordlists according to syntactical, emotional or psycho-

logical categories.  The main hypothesis is to assume that the words serve as guides to the way the 

author thinks, acts, or feels (Jordan, 2022).  In LIWC, categories may match grammatical categories 

such as personal pronouns, as well as broader ones (e.g., verbs), or more specific ones (verbs in the past 

tense, auxiliary verbs).  On a semantics level, the LIWC defines positive emotions (Posemo) (e.g., 

                                                      

6 The power language is used by people higher in power and status (e.g., your boss). 

7 Linguistic Inquiry & Word Count (Tausczik & Pennebaker, 2010). 

 



Savoy How effective is OpenAI to write speeches 

Glottometrics 58, 2025   9 

 

happy, hope, peace), or negative ones (Negemo) (e.g., fear, blam*8).  With these categories, the emo-

tional aspect (optimism or pessimism) of a speaker can be evaluated.  Presidents (or prime ministers) 

tend to voice positive words more frequently to appeal to the audience and to persuade the public.  In 

particular, populist leaders more often employ emotional terms to incite strong sentiments in the popu-

lation, usually to obtain a larger media coverage (Obradović et al., 2020), (Hart, 2020), (Savoy & 

Wehling, 2022). 

The category Cogproc contains terms related to self-reflection (e.g., think, refer*) and causal words 

(e.g., cause, understand).  This measure corroborates with an active thinking and narrative tone 

(Tausczik & Pennebaker, 2010).  Under Achieve (e.g., plan, win, lead*, etc.), we evaluate the confidence 

of the author to resolve or to propose a solution to a problem in a successful way.   

As a second approach, Hart et al. (2013) have developed the DICTION system, which groups different 

wordlists specifically created to analyse political messages.  For example, in the Familiarity category 

(e.g., a, at, to, with, etc.), we see words that occur in everyday expressions, and that correspond to terms 

which are easily understood (Ogden, 1968).  Such an enumeration corresponds to a stopword list applied 

by search engines to ignore terms without a clear meaning (Dolamic & Savoy, 2010).  When opting for 

a high level of familiarity, the speaker wants to address his or her message to the entire population using 

a simple tone.  To reinforce this characteristic, the orator could present a lower mean number of letters 

per words and write short sentences (see Table 2).   

More specific to political text analysis, the category Symbolism contains terms related to the country 

(e.g., nation, America), ideology (e.g., democracy, freedom, peace), or generally political concepts and 

institutions (e.g., law, government).  Those expressions are related on an abstract level and are usually 

employed to express an ideal view of the situation.  Additionally, the Politics category (e.g., power, 

republican, majority, federal, etc.) contains concrete terms related to political institutions and parties in 

the US.   

Table 4:  Semantic categories over the US presidents and both GPT versions. 

 Posemo Negemo Cogproc Achieve Familiarity Symbolism Politics 

GPT-3.5 7.34% 1.27% 8.12% 5.51% 20.06% 5.24% 3.94% 
GPT-4.o 7.21%† 0.99%† 7.23%† 4.36%† 20.01% 5.37% 5.40%† 

R. Reagan 4.86%†‡ 1.88%†‡ 8.93%†‡ 2.73%†‡ 

5.51 

4.35 

2.73 

3.08 

2.91 

2.86 

2.48 

2.09 

2.78 

22.87%†‡ 3.84%†‡ 4.18%‡ 
B. Clinton 4.20%†‡ 1.62%†‡ 9.72%†‡ 3.08%†‡ 22.60%†‡ 3.52%†‡ 3.37%†‡ 
W.G. Bush 4.99%†‡ 3.09%†‡ 8.46%‡ 2.91%†‡ 21.93%†‡ 4.10%†‡ 4.19%†‡ 
B. Obama 3.66%†‡ 1.73%†‡ 10.31%†‡ 2.86%†‡ 22.17%†‡ 3.16%†‡ 3.10%†‡ 
D. Trump 4.29%†‡ 2.34%†‡ 7.63%† 2.48%†‡ 20.83%†‡ 4.43%†‡ 3.91%‡ 
J. Biden 3.33%†‡ 1.74%†‡ 9.11%†‡ 2.09%†‡ 21.32%†‡ 3.50%†‡ 3.31%†‡ 

Presidents 4.33%†‡ 2.11%†‡ 9.06%†‡ 2.78%†‡ 22.04%†‡ 3.76%†‡ 

 
3.69%†‡ 

 

                                                      

8 When generating an entry in a wordlist, we use the symbol ‘*’ to denote any sequence of letters. 
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The percentages of each category achieved by the six presidents and the two GPT versions are reported 

in Table 4.  In the first two columns, both GPT versions employ more positive emotions and less nega-

tive ones compared to true presidents.  Moreover, the differences with the US leaders are always statis-

tically significant.  Between presidents, Bush presents the highest percentages in both positive and neg-

ative feelings.  In particular, he obtains the highest negative score with terms related to the war in Iraq 

and terrorists.  One may be surprised to not see Trump with the highest percentage of negative terms.  

This study is based on written speeches, certainly authored by ghostwriters and not the president him-

self.  With Trump, we observe significant differences between his written messages and his spontaneous 

language (e.g., interviews, press conferences, tweets) (Savoy & Wehren, 2022).   

With terms occurring in the Cogproc category, GPT-3.5 portrays a percentage similar to Bush.  Mean-

while, GPT-4.o, with the lowest value, is similar to Trump’s percentage.  In this regard, Obama clearly 

shows the highest value.  For the categories Achieve and Familiarity, the differences are always signif-

icant with all of the presidents.  GPT more often uses terms in the Achieve class and less words appear-

ing in the Familiarity one.  This finding confirms the presence of a complex formulation and longer 

words under GPT’s pen.  Moreover, GPT opts for a tone which underlies accomplished or fulfilled 

tasks.  

Both GPT versions employ more terms belonging to the Symbolism category, and the difference with 

the true presidents is always significant.  Moreover, the difference in percentage between GPT-3.5 and 

GPT-4.o is not significant.  When generating political texts, GPT favors words related to abstract ideas 

(e.g., freedom) and national references (e.g., America).  Between presidents, Obama uses these terms 

less often.   

When inspecting the percentages of terms appearing in the Politics category, the two GPT versions 

expose significant differences in their usage.  The newest model displays the highest value, more fre-

quently referencing concrete terms related to political institutions (e.g., Congress, state, president).  The 

differences with the presidents are always significant.   

Instead of focusing on a single percentage related to a given wordlist, the LIWC system proposes a 

combination of several categories to generate four composite measurements, namely emotional tone, 

confidence (or clout), analytical thinking, and authenticity.  The resulting numbers are standardised 

scores based on some LIWC categories, and their values range from 1 to 100 (Pennebaker et al., 2014; 

Jordan et al., 2019).  The computed values obtained with our corpus are depicted in Table 5, which 

shows the largest values in bold and the smallest in italics.  Moreover, a bilateral t-test has been applied 

because the values correspond to the means over all of the SOTU addresses written by each president 

or GPT model. 

The emotional Tone (Monzani et al., 2021) combines both positive and negative dimensions (see also 

Table 4).  Values larger than 50 indicate an overall positive tone, while numbers below this threshold 
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are associated with an overall negative sentiment.  As shown in Table 5, both GPT versions focus ex-

clusively on a positive timbre.  The differences with the true presidential allocutions are significant.  In 

the latter case, both positive and negative terms can be observed.  In majority, however, the positive 

ones dominate, in part because they must convince the citizens that they have the capacity to solve 

current problems, and that their actions are the most appropriate for the country.  Moreover, they are 

pleased that they have the power.  Finally, between presidents, Biden displays the lowest positive emo-

tional tone (during his term, he was confronted with the COVID-19 pandemic and the war in Ukraine).   

 

Table 5:  Composite summary measurements (LIWC). 

 Tone Clout Analytical Authenticity 

GPT-3.5 96.8 95.5 81.1 15.31 

GPT-4.o 98.3† 97.3† 79.0† 9.7† 

Reagan 78.6†‡ 85.3†‡ 81.8‡ 31.1†‡ 

Clinton 73.7†‡ 89.3†‡ 79.6†‡ 32.6†‡ 

Bush 60.8†‡ 89.3†‡ 84.1†‡ 22.8†‡ 

Obama 62.0†‡ 83.7†‡ 71.7†‡ 37.1†‡ 

Trump 62.3†‡ 89.7†‡ 80.2†‡ 30.0†‡ 

Biden 56.2†‡ 78.2†‡ 73.8†‡ 40.0†‡ 

Presidents 66.8†‡ 86.6†‡ 78.9† 31.5†‡ 

 

The Clout (or confidence) category is used to determine the person’s relative status in a social hierarchy.  

A leader must have a high status reflected by a higher usage of the pronouns ‘we’ and ‘you’ (see 

Table 3).  On the contrary, a person of lower status tends to employ more I-words and impersonal 

pronouns (e.g., it, one) (Kacewitz et al., 2014; Pennebaker, 2011).  People with a high social status 

present higher authoritative language and have a tone of higher certainty.  As depicted in Table 5, both 

GPT versions expose a high value in this dimension.  For both Tone and Clout, Biden shows the lowest 

value among US presidents.   

The Analytical thinking measure has been shown to be associated with a greater academic level (Mar-

kowitz, 2023).  This tone is grounded on a larger cognitive elaboration, leading to the impression of 

conveying more competence.  An analytical language appears logical and formal, employs more articles 

and prepositions, and focuses more on noun phrases (Pennebaker et al., 2014; Jordan et al., 2022).  

Opting for a highly analytical tone, the speaker takes the risk of appearing too distant, impersonal, and 

lacking an emotional aspect.  On the other hand, a more intuitive and personal person writes more often 

with pronouns, negations, auxiliary verbs, conjunctions and some adverbs (e.g., so, very) (Pennebaker 

et al., 2014).  Among presidents, Bush presents the highest analytical thinking, while Obama expresses 

the lowest. 
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The Authenticity measurement (Pennebaker et al., 2014) is related to the way a leader is able to 

communicate in a spontaneous way (Markowitz et al., 2023), a pitch usually viewed as an honest one.  

Adopting this characteristic, the language is more concrete and presents more self-references in a natural 

way.  Leaders adopting this tone appear to be closer or more connected to people’s interests (Hart, 

2023).  However, this attitude does not imply that the speaker tells the truth (Pennebaker, 2011).  As 

displayed in Table 5, Biden presents the highest value, while both GPT versions depict the lowest 

values.  All presidents expose a significantly higher score than both GPT versions.  

From data depicted in Table 5, GPT has a highly positive emotional tone, adopts a high-power language, 

and lacks authenticity.  Only in analytical thinking could GPT be viewed as a true president.  Biden’s 

image appears to be clearly distinct from that of other presidents, with a more negative tone that is both 

low in language power and analytical thinking, but that could be viewed as honest.   

6 Intertextual Distance 

To evaluate more globally the similarity between all presidents and both GPT versions, an intertextual 

distance between all pairs of texts can be computed (Labbé, 2007).  The computation of this measure 

between Text A and Text B is defined according to the entire vocabulary.  Equation 1 specifies this 

measure with nA indicating the length of Text A (in number of tokens), and tfi,A denoting the absolute 

frequency of the ith term (for i = 1, 2, …, m).  The value m represents the vocabulary length.  Usually, 

both texts do not have the same length, so we may assume that Text B is the longest.  To reduce the 

longest text to the size of the smallest, each of the term frequencies (in our case tfi,B) is multiplied by 

the ratio of the two text lengths, as indicated in the second part of Equation 1.   

(1)       D(A, B) =
∑ | 𝑡𝑓𝑖,𝐴 − tf𝑖,𝐵̂|𝑚

𝑖=1
(2 ∙ 𝑛𝐴)

⁄                   with 𝑡𝑓𝑖,𝐵̂ =  𝑡𝑓𝑖,𝐵 ∙
𝑛𝐴

𝑛𝐵
⁄  

Having six presidents, and for each president the two GPT versions, we have, in total, 18 texts.  Directly 

displaying the 18 x 18 matrix containing these distances is of limited interest. Knowing that this matrix 

is symmetric and that the distance to itself is nil, we still have in total ((18 x 18) – 18) / 2 = 153 values.  

To achieve a better picture than a list of values or a dendrogram, such distance matrices can be 

represented by a tree-based visualisation approximately respecting the real distances between all nodes 

(Baayen, 2008; Paradis, 2011).  We adopt this new representation, of which the result is displayed in 

Figure 1.  Additionally, the string ‘35’ has been added after each president’s name to indicate speeches 

generated by GPT-3.5.  A similar denomination has been applied for GPT-4.o. 
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Figure 1.  Overall distance between presidents and GPT versions. 

 

Overall, this figure illustrates the large difference between the true addresses (appearing on the top part) 

and the other GPT speeches (depicted in the bottom part).  To obtain a better understanding of this 

picture, the starting point of each cluster is indicated by a red dot.  The two GPT versions clearly form 

two distinct subtrees, and the distance between them is smaller than with the set of true speeches.   

With GPT-4.o, two subgroups can be defined: one with the Republican presidents (Bush 40, Trump 40, 

and Reagan 40), and a second with the Democrats (Clinton 40, Biden 40, and Obama 40).  Moreover, 

the true presidents cluster displays a greater distance between each member than in the other two groups.  

Finally, the last two US presidents (Trump and Biden) are displayed with some distance from the four 

others.   

7 Conclusion 

Some experiments performed in this study demonstrate that both GPT models can generate political 

speeches sharing some similarities with real State of the Union (SOTU) addresses.  In addition, the 

newest version (GPT-4.o) exposes distinct characteristics compared to GPT-3.5.  For example, the mes-

sages generated by GPT-4.o are significantly longer: on average, 645 tokens vs. 493 for GPT-3.5.   

The two models share some common features, such as a higher language complexity compared to true 

presidents.  In this regard, GPT generates longer words (the mean is 4.96 letters per word), with a higher 
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percentage of big terms (on average, 39%), and longer sentences (20.76). Among presidents, Biden 

tends to present the lowest language complexity, with the shortest words and sentences.   

When focusing on personal pronouns, both GPT versions opt for a large percentage of we-words (we, 

us, our) with few other pronouns (e.g., the third singular pronouns occur very rarely).  Even if the 

increased frequency of we-words is a characteristic of political leaders in power, GPT employs them 

more often than true presidents.  Between presidents, Biden presents a distinct figure with a relatively 

high number of I-words and second-person pronouns.   

When inspecting emotional terms, both GPT models employ almost only positive terms (on average, 

7.3%), leading to an optimist tone.  True presidents also favour positive sentiments (on average 4.3%), 

along with some negative ones (2.1%).  Among presidents, Bush writes with the highest number of 

emotional terms (on average, 4.99% are positive, 3.09% negative).  This feature can be explained by 

the war in Iraq and against terrorists.  Again, Biden uses the lowest percentage of positive terms 

(3.33%), and a low number of negative ones (1.74%).   

When considering other categories, the two GPT versions opt for a larger percentage of Achieve (on 

average, 4.9%), Symbolism (5.3%), and Politics (4.7%) terms.  This can be explained by the wish to 

anchor the speech in political parlance (e.g., nation, Congress, America) and to underline the results or 

actions already planned (e.g., win, plan).  For the presidents, the average percentages are significantly 

lower (Achieve: 2.8%, Symbolism: 3.8%, Politics: 3.7%).   

When considering other psychological measurements, both GPT models expose a clear language, be-

longing to a high-status person (Clout), but with a low value in authenticity.  The resulting tone could 

appear authoritative and distant.  Among presidents, Biden opts for a less optimistic and less confident 

tone that could also appears as being more honest.   

Finally, by computing a global intertextual distance between each president and the corresponding mes-

sages generated by both GPT versions, three separate clusters are displayed: one for each GPT model, 

and one for the true presidents.  Based on the language, the difference between machine-based speeches 

and real ones appears clearly, with GPT favouring a more complex language, opting for an optimistic 

feeling, and a more authoritative tone.  Based on current technology, a LLM producing political mes-

sages can still be identified (when the text is rather long, namely more than 2,000 words).  With some 

improvements over existing models, the risk is increasing that computers could generate speeches that 

can no more be discriminated from real political leaders.  At that time, this technology could represent 

a real threat for all nations.    
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Figure A.1.  Warning received from OpenAI when generating political speeches 
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ABSTRACT

We classify texts using relative word frequencies. The task is to distinguish human-written texts

from those generated by a computer using modern algorithms. We study two essay datasets,

each containing an equal number of human-written and computer-generated essays. Studying Zipf

diagrams shows that the generated texts have a significantly smaller vocabulary compared to human

ones. However, the relative frequency of rare words (not included in the 1000 most common) does

not allow us to confidently classify the texts. As additional features, we used the relative frequencies

of the four most frequent words, as well as the ratio of the number of hapax legomena to the total

number of different words. This feature allows to significantly improve the classification. Using

these six features allows us to fairly confidently determine whether the text is computer-generated.

Keywords: Large Language Model, Zipf’s Law, rare words.

1 Introduction

The advent of Large Language Models (LLMs) such as GPT-3/4 has opened entirely new possibilities

in Artificial Intelligence (AI) text generation and radically changed the content of research in the field of

AI.

Among the new research challenges arising from this event, one of the main ones is the problem of

detecting texts created by AI, which is topical in various fields — from school and university education

to information security. Intensive research in this direction is underway. In particular, such AI detection

software tools as GPTZero (2023) and ZeroGPT (2024) have become widely known. Unfortunately,

detecting LLM-generated texts is an intricate challenge, and until now the reliability of such software

is debatable. In particular, in a study conducted by Weber-Wulff et al. (2023), researchers evaluated 14

detection tools, including GPTZero, and found that “all scored below 80% precision and only 5 above

70%.”
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A comprehensive review of different methods for the detection of AI-generated text is given by Wu et al.

(2024). In this review, the detector techniques are divided into a few groups: watermarking techniques,

statistics-based detectors, neural-based detectors, and human-assisted methods.

Recently, it was announced that a method had been developed to recognize machine-generated texts with

a high degree of reliability (Hans et al., 2024). It is claimed that over a wide range of document types

the method, called Binoculars, detects over 90% of generated samples from ChatGPT (and other LLMs)

at a false positive rate of 0.01%, despite not being trained on any ChatGPT data. Binoculars belongs to

neural-based detectors, it uses two LLMs, one is an “observer” LLM and another is a “performer” LLM.

One of possible approaches to distinguishing between human- and machine-generated texts can be based

on a statistical analysis of the text vocabulary, in particular on investigating the usage of rarest and most

frequent words.

Zipf (1949) and Mandelbrot (1965) showed that human texts approximately follow a power law of

decreasing frequencies

(1) 𝑓𝑟 ≃ 𝑐

(𝑟 + 𝑏)𝑎 ,

where 𝑓𝑟 is the relative frequency of word with rank 𝑟,

𝑎 is the Zipf exponent,

𝑏 is the Mandelbrot shift,

𝑐 is the normalizing constant.

However, Mandelbrot demonstrated that texts generated by a simple random algorithm also satisfy this

law.

The distinction between human and machine texts may be found in the parameters of the law. It is known

that these parameters vary over a fairly wide range, depending on the author, and are not constant for the

entire language.

Piantadosi (2014) analyzed deviations of human language in the frequency distribution from the Zipf

— Mandelbrot law and concluded that human language has a highly complex, reliable structure in the

frequency distribution over and above this classic law.

Santis et al. (2024) studied the frequency distribution of words in novels and in texts generated by

computer algorithms, but did not find a universal criterion for distinguishing them: "We have planned

to go in depth on these interesting questions while maintaining the general claim that concerns the

characterization of texts generated by machines with respect to some methodologies made available by

the complexity sciences."
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Two companion papers Abebe et al. (2022) and Abebe et al. (2023) explore the potential of the Heaps

diagram (a process of counts of different words in a text) to analyze text homogeneity and find places

where two different texts connect.

In addition to Zipf’s law, studies highlight how temporal and structural factors shape word distributions.

Altmann et al. (2009) demonstrate that word usage exhibits bursty patterns — clusters of high frequency

followed by lulls — deviating from Poisson randomness and aligning with stretched exponential models.

This variability is context-dependent, reflecting semantic and pragmatic influences.

Further complexity arises from the interplay of word properties and sentence structure. Popescu et al.

(2009) reveals that relative word frequencies correlate with inherent linguistic features: shorter words and

polysemous terms (e.g., “run”) tend to occur more frequently, while morphological complexity reduces

usage rates. Critically, positional dynamics in sentences also govern frequency—low-frequency words

disproportionately occupy informationally salient positions, such as sentence-final slots, due to their role

in conveying new or emphatic content.

Beyond these intrinsic and syntactic factors, variability across texts introduces additional stochasticity:

Gerlach and Altmann (2014) demonstrate that vocabulary size exhibits Taylor’s law (Taylor, 1961), where

fluctuations in word diversity persist even for long texts, scaling linearly with the mean due to topic-driven

heterogeneity. This quenched disorder — rooted in topical variations rather than pure randomness —

renders vocabulary growth non-self-averaging, meaning lexical richness cannot be disentangled from

contextual or discourse-level shifts.

These findings underscore that word frequency is not merely a function of statistical ubiquity but is

mediated by syntactic roles, semantic richness, discourse structure, and systemic variability across

textual domains.

Thus, while Zipf’s law describes the global distribution of word frequencies, the interplay of burstiness,

lexical properties, and positional constraints reveals finer-grained linguistic mechanisms that transcend

frequency alone.

In the present paper, we study the statistical characteristics of AI-generated texts and compare them with

those of human-written essays. For this purpose, two datasets are analyzed.

The human essays of the first dataset are taken from a project by Morgan (2012) aimed at developing

an automated scoring algorithm for student-written essays. They are available from Kaggle (https:

//www.kaggle.com), a data science competition platform, and contain responses to a single prompt

written by students.

The essays are analyzed and compared along with the essays generated by an LLM from the same prompt.

Glottometrics 58, 2025 21

Kudryavtseva and Kovalevskii Human-Written and AI-Generated Text

https://www.kaggle.com
https://www.kaggle.com


For this purpose, we used one of the most powerful freely available LLM (NousResearch, 2023). The

generated essays can be found on the GitHub page https://github.com/kudrann/ai-human-data.

The second dataset is collected by Verma et al. (2023) who have been developing Ghostbuster, a system

for detection of AI-generated texts. The dataset includes high school and university level essays taken

from the IvyPanda web site (https://ivypanda.com/essays/) as well as LLM-generated essays prepared by

Ghostbuster developers. They used ChatGPT to first generate a prompt corresponding to each human

essay and then generate a corresponding essay that responds to that prompt. The full dataset can be

found on their Github page https://github.com/vivek3141/ghostbuster-data.

2 Methodology

It is well known that in many natural languages the frequency of a word 𝑓 is roughly inversely proportional

to its number (rank) 𝑟 in the list of the most frequent words, 𝑓 ∼ 1/𝑟 . This empirical relation is known

as Zipf’s law (Zipf, 1949). In fact, in many cases a generalized version of this relation known as the Zipf

— Mandelbrot (ZM) law (1) works better (Mandelbrot, 1965). As an example, the frequency of words

in the classic novel “Dracula” by Bram Stoker is shown in Figure 1 using the log-log scale.

Figure 1: Word frequency distribution in the novel “Dracula” by B. Stoker.

The frequency distribution of the words is seen to be in close agreement with the ZM law at 𝑎 = 1.012

and 𝑏 = 2.255 for words whose rank is less than approximately 110. At the same time, the distribution

of rare words deflects noticeably and cannot be described by the function with the same values of 𝑎 and

𝑏. In fact, it can be better fitted by the function ∼ 1/𝑟𝑎 with 𝑎 = 1.17 (Figure 1).
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It can be expected that the distribution of rare words is specific to different authors and may be considered

as an important characteristics of an author’s style. In particular, one can assume that human-written and

AI-generated texts can differ in statistical properties of distribution for rare words. So, we pay special

attention to analyzing their usage in the essays.

For text analysis, a Python code was written using the text processing library collections. After prepro-

cessing (removing punctuation and capitalization, splitting into separate words), it allows us to construct

word frequency distributions, determine the parameters of the distributions, study the scatter in the

frequency of rare words, and so on. The results of its work are presented below.

3 Results

3.1 The First Dataset

The essays in the dataset of Morgan (2012) were written as a response to the following prompt.

More and more people use computers, but not everyone agrees that this benefits society.

Those who support advances in technology believe that computers have a positive effect on

people. They teach hand-eye coordination, give people the ability to learn about faraway

places and people, and even allow people to talk online with other people. Others have

different ideas. Some experts are concerned that people are spending too much time on

their computers and less time exercising, enjoying nature, and interacting with family and

friends. Write a letter to your local newspaper in which you state your opinion on the effects

computers have on people. Persuade the readers to agree with you.

800 essays are selected from this database for statistical analysis. They are compared with the same

number of essays generated by Nous-Hermes-Llama2 (NousResearch, 2023), one of the most powerful

freely available LLM, containing 13 billion parameters. Using the LMStudio application (LMStudio,

2024), the model quantized to 8 bits was installed on a compute cluster with 8 Nvidia GeForce GTX

1080 graphics processing units (GPUs) and 11.264 GB of video memory on each GPU. 800 essays were

generated with the temperature value (a parameter that determines the degree of difference between the

generated essays) 𝑇 = 0.7. The average length of essay is 284 words, the average generation time is 21 s.

An example of the generated essay is given below:

Dear Editor,

I am writing this letter to express my thoughts on the impact of computers on society.
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As technology advances and more people become reliant on computers, it is essential to

consider both the benefits and drawbacks of this development.

On one hand, computers have undoubtedly made our lives easier in many ways. They

provide access to a wealth of information, allowing us to learn about any topic instantly,

communicate with people across the globe, and perform tasks more efficiently. In addition,

they help develop important skills such as hand-eye coordination and problem-solving.

However, there are also concerns that excessive computer use can lead to negative

consequences. People may spend too much time in front of screens, neglecting their phys-

ical health, social interactions, and relationships with family and friends. Moreover, the

widespread use of computers has led to job losses in some sectors, causing economic

hardships for many individuals.

In conclusion, while computers have revolutionized our lives in numerous ways, it

is crucial that we strike a balance between embracing technology and maintaining our

physical, mental, and social well-being. By being mindful of the potential drawbacks and

taking steps to mitigate them, we can ensure that computers continue to benefit society

positively.

Figure 2: Word frequency distributions in the human-written and AI-generated essays. Dataset #1.

The word frequency distributions for the human-written and AI-generated essays are compared in

Figure 2.

The word frequencies of both human-written and AI-generated essays deviate significantly from Zipf’s

law, especially if one looks at the “tails” of the distributions.
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It is worth noting that there are also some distinctions in the list of the most frequent words — see Table 1.

Table 1: The most frequent words in human-written and AI-generated essays. Dataset #1.

Rank 1 2 3 4 5 6 7 8 9 10

Humans

Word the to and you are computers on people of that
Frequency 10029 9934 8308 7755 6916 4695 4682 4478 4419 4268
Percentage 3.53 3.50 2.93 2.73 2.44 1.65 1.65 1.58 1.56 1.50

LLM

Word and to the of computers have that in on with
Frequency 9707 7631 5730 5482 5418 3670 3642 3638 3632 3398
Percentage 4.27 3.36 2.52 2.41 2.38 1.62 1.60 1.60 1.60 1.50

In order to find the best fits of these distributions to the ZM law (1) we estimate the 𝑎 and 𝑏 constants

by solving a nonlinear least-squares problem with the Levenberg—Marquardt (damped least-squares)

algorithm (Gill et al., 1981, pp. 136-137). As a result, the constants are found to be 𝑎 = 1.235, 𝑏 = 7.551

for the human-written essays and 𝑎 = 1.035, 𝑏 = 4.17 for the AI-generated ones — see Figure 3 and

Figure 4.

Thus, the parameters of the ZM fittings differ noticeably for two distributions. Moreover, in both cases

the distributions are in reasonable agreement with the ZM law for word ranks 𝑟 ≲ 300, though there is

some visible deviation from the ZM law in the range 50 < 𝑟 < 200 for the LLM-generated essays.

Figure 3: Word frequency distribution in the human-written essays compared with the ZM law. Dataset #1.

As concerns rare words, both distributions decay much faster than their calculated ZM fittings. The
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Figure 4: Word frequency distribution in the AI-generated essays compared with the ZM law. Dataset #1.

distribution tails can be better fitted by 𝑑/𝑟𝑎 functions with different values of 𝑎. As is seen in Figure 3

and Figure 4, the distribution for human-written essays at 𝑟 ≥ 300 are fitted well with 𝑎 = 1.59 while

the distribution for AI-generated essays at 𝑟 ≥ 500 better corresponds to 𝑎 = 2.41. The exponents in the

power law are significantly different. Also, it is seen that the transition to the power-law distributions

happens for the AI-generated essays at a noticeably larger value of 𝑟 than it does for the human-written

ones (𝑟 = 500 instead of 𝑟 = 300).

Peculiarities in the distribution tails prompted us to take a closer look at uncommon words occurring in

the essays. In Figure 5 the proportion of uncommon (𝑟 > 1000) words is shown as a function of the

essay number. It can be concluded that the average proportion of uncommon words in the human-written

essays is much higher than in the AI-generated ones. Additionally, there are some essays composed by

students in which the proportion is very high.

Our hypothesis is that the proportion of rare words remains stable for a homogeneous text of one author,

but varies significantly between authors. The correlation coefficient between the proportion of rare words

and the length of the essay in words is 𝑐𝑜𝑟𝑟 = 0.64. This confirms the difference between authors and

also indicates that authors with a richer vocabulary write longer texts on average. The dependence of the

proportion of rare words on errors and typos is analyzed in detail below.

In Table 2 the maximum proportion of uncommon words, their average proportion and the standard

deviation are given for both sets of essays. One human-written essay contains 57.6% of uncommon

words!
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Figure 5: Frequency of uncommon words (𝑟 > 1000) in essays. Dataset #1.

Table 2: The proportion of uncommon words (𝑟 > 1000) in human-written and AI-generated essays. Dataset #1.

Max. fraction Mean value Standard deviation

LLM 12.8% 4.4% 1.9%
Humans 57.6% 10.4% 4.3%

The “record-breaking” essay with 57.6 % of words not in the top 1000 looks like as follows.

I aegre waf the evansmant ov tnachnololage. The evansmant ov tnachnolige is being to

halp fined a kohar froi alnsas. Tnanchnololage waf ont ot we wod not go to the moon.

Tnachnologe evans as we maech at. The people are in tnacholege to the frchr fror the

good ov live. Famas invanyor ues tnacholage leki lena orde dvanse and his fling mashine.

Tnachologe is the grat.

Spelling errors make this text virtually incomprehensible.

As can be seen from Fig. 5 and Table 2, the average proportion of uncommon words in the human-written

essays is about 10%. There are some essays in which the proportion is noticeably higher, but the number

of such essays does not seem high. To investigate the relationship between the number of uncommon

words and that of orthographical mistakes, we analyzed 20 randomly chosen essays. There are mistakes

and typos in all 20 essays. In 17 of them, their proportion does not exceed 4 %, there is also one

essay each with 8, 9 and 11 % of mistakes and typos. The correlation between the number of words in

an essay and the percentage of mistakes is weakly negative (𝑐𝑜𝑟𝑟 = −0.33) and insignificant (p-value,

statistical significance is 𝑝 = 0.16). It is expected as poorly proficient students write shorter essays. The

correlation between the percentages of mistakes and uncommon words is weakly positive (𝑐𝑜𝑟𝑟 = 0.30)
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and insignificant (𝑝 = 0.20). Thus, mistakes and typos contribute to the frequency of rare words, but

their contribution is not decisive.

Thus, it can be concluded that the differences in statistical characteristics of human-written and AI-

generated essays are caused, at least partially, by spelling errors inherent in humans.

3.2 Classifications of Texts of the First Dataset

We classify texts using C-Support Vector Classification (Pedregosa et al., 2011) with the parameter

kernel=‘linear’, see https://scikit-learn.org/dev/modules/generated/sklearn.svm.SVC.html.

Firstly, we use only one feature, namely 𝑥1, which represents the fraction of uncommon words in the

dataset (𝑟 > 1000). The model uses 75 % of the data for training and other 25 % for testing. The

corresponding parts of the sets of human and AI-generated texts are selected at random.

The AI-generated texts are designated as the positive class, while the human texts are designated as the

negative class. Thus, True Positive (TP) denotes the number of AI-generated texts correctly classified as

AI-generated, False Positives (FP) — human-written texts incorrectly classified as AI-generated, True

Negatives (TN) — human-written texts correctly classified as human-written and . False Negatives (FN)

— AI-generated texts incorrectly classified as human-written.

The test is based on the pre-trained set and the test sample, which comprises 200 human texts and 200

AI-generated texts. In this test,

TP = 176, FP = 40, TN = 158, FN = 26, so that the accuracy = 0.835.

In order to obtain a more accurate classification, we use additional features of texts:

𝑥2 is the percentage of word "the",

𝑥3 is the percentage of word "and",

𝑥4 is the percentage of word "you",

𝑥5 is the percentage of word "are",

𝑥6 is the proportion of hapax legomena.

The features 𝑥2, 𝑥3, 𝑥4, 𝑥5 are selected on the base of Table 1 as words with the greatest differences in

percentages.

The choice of feature 𝑥6 is based on Figure 2. The last step (horizontal segment) of the relative frequency

graph corresponds to hapax legomena. This step is significantly shorter in the set of AI-generated texts

than in the human ones.
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The Zipf parameter can be estimated by the inverse value, i.e. by dividing the number of different

words by the number of hapax legomena. This estimate was proposed within the framework of the

elementary probability model in Ohannessian and Dahleh (2012), its properties are studied in Chebunin

and Kovalevskii (2019). In particular, the corresponding statistical test allows us to study the significance

of differences in the number of hapax legomena. The correspondence of texts to the elementary proba-

bilistic Zipf’s model from the point of view of this statistics was studied in Fayzullaev and Kovalevskii

(2024). Davis (2018) proposed and investigated an interesting and very precise relationship between the

number of different words and the number of hapax legomena. Another interesting model for the number

of hapax legomena was formulated by Milička (2009).

Using these 6 features, we have under the same approach for the same training and test sets of texts:

TP = 201, FP = 5, TN = 193, FN = 1, so we have 6 mistakes overall, and the accuracy = 0.985.

Our optimal linear classifier produces the following weights for the features (Table 3).

Table 3: Optimal linear classifier for dataset #1.

Feature 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Importance 0.048 0.086 0.070 0.470 0.206 0.120

3.3 The Second Dataset

The analyzed texts consist of 1000 essays written by students and 1000 texts of approximately the same

length generated by ChatGPT using prompts extracted from the students’ essays. The word frequency

distributions for the human-written and AI-generated essays are shown in Figure 6.

Figure 6: Word frequency distributions in the human-written and AI-generated essays. Dataset #2.
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It can be seen that both distributions follow Zipf’s law (not very precisely) up to 𝑟 ≃ 80 ÷ 100. Their

shapes for rarer words are very similar but clearly do not match the power-law distribution. It is worth

noting that the distributions are much closer to each other than it was for the first dataset.

Figure 7: Word frequency distribution in the human-written essays compared with the ZM law. Dataset #2.

Figure 8: Word frequency distribution in the AI-generated essays compared with the ZM law. Dataset #2.

Least-square fitting of the word frequency distributions to the ZM law has been performed and the

resulted best fits are compared with the distributions themselves for human-written and AI-generated

essays in Figs. 7 and 8, respectively. The best fitting parameters are 𝑎 = 1.085, 𝑏 = 0.659 for the former

curve and 𝑎 = 1.403, 𝑏 = 2.566 for the latter.
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As can be seen, the deviations from the ZM law are particularly large for rare words, at 𝑟 > 150 for the

human-written essays and at 𝑟 > 60 for the AI-generated ones. This is because the least-square fitting

procedure primarily seeks to reduce errors at small values of 𝑟 for which word frequencies are high.

At the same time, the word frequency distributions for rare words follow the power law with the same

exponent 𝑑 = 1.5, much steeper than Zipf’s law.

Frequencies of uncommon words (Figure 9) show that, for the second dataset, there are no such pro-

nounced difference in their averaged and maximum fractions between human-written and AI-generated

essays.

Figure 9: Frequency of uncommon words (𝑟 > 1000) in essays. Dataset #2.

The maximum and averaged fractions of uncommon words in human-written and AI-generated essays

as well as the values of standard deviation are given in Table 4.

Table 4: The fraction of uncommon words (𝑟 > 1000) in human-written and AI-generated essays. Dataset #2.

Max. fraction Mean value Standard deviation

LLM 50.7% 29% 6.2%
Humans 58.6% 30.4% 5.8%

The text classification based on the same one and six features as above has also been performed for the

second dataset. We have for one feature:

TP = 127, FP = 119, TN = 129, FN = 124, the accuracy = 0.513, there are many mistakes.
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For six features:

TP = 214, FP = 32, TN = 216, FN = 37, the accuracy = 0.862.

Overall, one can see that, in the second dataset, computer and human texts are not so easily distinguished.

Using one feature leads to a large number of errors, and increasing the number of features allows us to

significantly improve the accuracy.

The optimal linear classifier is shown in Table 5.

Table 5: Optimal linear classifier for dataset #2.

Feature 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Importance 0.151 0.102 0.254 0.014 0.121 0.358

4 Conclusion

Computer-aided text generation is becoming increasingly common in essay writing. The present study

contributes to the recognition of computer-aided text generation. This study is based on relative word

frequencies and allows for the combination of the proposed methods with other methods for recognizing

computer-aided text generation. A Python code has been developed for analyzing statistical features of

word usage in different texts using the well-known collections library. Analysis of the entire text array

reveals significant differences in the relative frequencies of the most common words, as well as in the

total vocabulary size.

The relative frequency of rare words alone is not sufficient for confident recognition. A more accurate

algorithm uses, in addition, the relative frequencies of the four most common words, as well as the ratio

of hapax legomena to the total number of different words.

Dataset 1 shows a classification accuracy of 0.835 using only the relative frequency of rare words (r >

1000), and an accuracy of 0.985 using six features, with the greatest contribution to the classification

coming from the personal pronoun “you”, the verb “are” and the proportion of hapax legomena. Dataset

2 shows an accuracy of 0.513 when using only the first feature, and an accuracy of 0.862 when using six

features. Here, the largest weights are given to the proportion of hapax legomena, the relative frequency

of the conjunction “and” and the relative frequency of rare words.

It is worth noting that, as follows from the investigation of Dataset 1, typos and orthographical mistakes

common in human-written text can, to some extent, contribute to statistical features of word frequency

distributions. Thus, a study comparing AI-generated texts with those written by real humans but contain

no errors – whether originally or after correction – could shed even more light on the topic under study.

However, it would require the use of an automatic spell-checking tool or the compilation of mistake-free
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essay databases.
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ABSTRACT

The syntactic structure of a sentence can be represented as a graph, where vertices are words and

edges indicate syntactic dependencies between them. In this setting, the distance between two

linked words is defined as the difference between their positions. Here we wish to contribute to the

characterization of the actual distribution of syntactic dependency distances, which has previously

been argued to follow a power-law distribution. Here we propose a new model with two exponential

regimes in which the probability decay is allowed to change after a break-point. This transition

could mirror the transition from the processing of word chunks to higher-level structures. We find

that a two-regime model – where the first regime follows either an exponential or a power-law decay

– is the most likely one in all 20 languages we considered, independently of sentence length and

annotation style. Moreover, the break-point exhibits low variation across languages and averages

values of 4-5 words, suggesting that the amount of words that can be simultaneously processed

abstracts from the specific language to a high degree. The probability decay slows down after the

breakpoint, consistently with a universal chunk-and-pass mechanism. Finally, we give an account

of the relation between the best estimated model and the closeness of syntactic dependencies as

function of sentence length, according to a recently introduced optimality score.

Keywords: dependency syntax, dependency distance, exponential distribution, power-law distri-
bution

1 Introduction

Language is one of the most complex and fascinating expressions of humans as social animals, stemming

from our urge for communication and physical and cognitive limitations. The interaction between these

two forces inevitably shapes language at many levels (Christiansen and Chater, 2016; Liu et al., 2017).

Among them we here focus on syntax, namely the way in which words in a sentence compose into larger

hierarchical structures, creating a parallel dimension to their plain linear arrangement. The hierarchical

structure arises from the relations between words, modelled by means of a directed edge in the one-

dimensional space of the network of a sentence (Figure 1). We call the resulting structure a syntactic

dependency tree: each vertex is a word, and each word – besides the root – depends syntactically on its
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head, to which it is connected by an edge. We define 𝑑 as the absolute value of the difference between

the positions of two syntactically related words (Ferrer-i-Cancho, 2004). Thus, consecutive words are at

distance 1, words separated by an intermediate word are at distance 2 and so on. For instance, in Figure 1

“John” and “gave” are at distance 1, “gave” and “painting” are at distance 3, and so on.

John gave Bill the painting that Mary hated.

1 1

3

1

3

2

1

Figure 1: Example of syntactic dependency tree. Edges are labelled with the value of the syntactic dependency distance

between the words they connect.

A well-established principle of Dependency Distance minimization (DDm) has been consistently found

in languages, implying the preference for short dependencies (Ferrer-i-Cancho, 2004; Ferrer-i-Cancho

et al., 2022; Futrell et al., 2015; Liu, 2008).

1.1 On the distribution of syntactic dependency distances

The large body of evidence in favor of DDm suggests that there are universal patterns underlying

language structure, which are likely to reflect the functioning of the human brain rather than features

of specific languages. Here we focus on the probability distribution of syntactic dependency distances

as a window to that functioning (Liu et al., 2017). Ferrer-i-Cancho described the probability of a

syntactic dependency as an exponentially decaying function of distance for sentences of fixed length in

Czech and Romanian (Ferrer-i-Cancho, 2017; Ferrer-i-Cancho, 2004). However, he made an interesting

observation concerning a change in the speed of the decay: the probability of observing a dependency at

distance 4-5 or more is higher than expected, in the sense that the decay slows down, which apparently

contradicts the DDm principle itself. Later on, Liu proposed a power-law behaviour to describe the

distribution of dependency distances in a Chinese treebank, considering sentences of mixed length (Liu,

2007) that was later refined as a modified power law with an additional parameter (Liu, 2009). A later

cross-linguistic study covering 30 languages identified a power-law distribution for long sentences, and

an exponential trend in short ones (Lu and Liu, 2016). These approaches illustrate the complexity of

the analysed problem. Nevertheless, all these distributions have a similar shape, characterized by the

dominance of very short distances and a long tail (Jiang and Liu, 2015). The observed differences could

hence derive from systematic discrepancies in sentence lengths, context, and annotation style, which all

influence syntactic dependency distances (Ferrer-i-Cancho et al., 2022; Jiang and Liu, 2015). Moreover,
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power-laws can emerge from mixing other distributions, for instance from differently parameterized

exponentials (Stumpf and Porter, 2012). Hence the need – expressed in various studies (Ferrer-i-Cancho,

2004; Ferrer-i-Cancho and Liu, 2014; Jiang and Liu, 2015) – to find the common ground of these results,

analyzing the distribution of dependency distances while accounting for all these factors: considering

both mixed and fixed sentence lengths in a large enough parallel corpus, while also controlling for

annotation style.

1.2 Exponential distributions in nature

An exponential distribution of syntactic dependency distances was predicted assuming a constraint on

the average distance between syntactically related words that was justified in terms of cognitive economy

(Ferrer-i-Cancho, 2004). At a lower cognitive level, the exponential distribution of projection distances

between cortical areas has been justified in terms of a general principle of wiring economy in neural

networks (Ercsey-Ravasz et al., 2013).

It is worth framing our proposal of a two-regime exponential distribution for syntactic dependency

distances in a broader setting where a breakpoint may indicate a boundary between local and non-local

dynamics. A double exponential distribution for the average distance traversed by foraging ants is a

robust phenomenon where the breakpoint separates risk-averse from risk-prone trajectories (Campos

et al., 2016). A hypothesis for the origins of the breakpoint in the distribution of syntactic dependency

distances is elaborated below.

1.3 Short-term memory (STM) limitations

Short-term memory (also called working memory), refers to a system, or a set of processes, holding

mental representations temporarily available for use in thought and action (Cowan, 2017). G. Miller’s

classic article set the grounds for research on a possible absolute constraint on the amount of information

that can be temporarily stored in memory, and on the mechanisms enacted to cope with it (Miller, 1956).

The estimated values of this maximum span vary: 7± 2 (Miller, 1956), 2− 3 (Lewis and Vasishth, 2005)

or 4± 1 (Cowan, 2001). However, it is commonly argued that such variation reflects variation in the unit

of measurement: Miller’s 7 ± 2 (Miller, 1956) would correspond to the amount of information before

being compressed while lower values would correspond to chunks or compressed information (Mathy

and Feldman, 2012).

These considerations on STM are particularly relevant in the scope of linguistic communication: com-

municating requires constantly receiving and processing new inputs, without losing reference to the

previous ones. To illustrate this, suppose a left-to-right incremental processing of the sentence in Fig-

ure 1. Let an open dependency be one in which only one of the two elements that compose it has already

Glottometrics 58, 2025 37



Petrini and Ferrer-i-Cancho The distribution of syntactic dependency distances

appeared, and a closed dependency one in which both the head and the dependent have already been

encountered. Then, in the context of dependency structure the success of communication depends on

the ability to keep track of an open dependency while opening new ones, and without knowing a priori

when it is going to be closed (Liu et al., 2017). Notice that dependencies represent relations between

words, which are necessary for the speaker to convey a complex message building it from smaller units

(encoding), and for the listener to recover such message by understanding the subjacent structure of the

sequence of words (decoding). Thus, syntactic structure really reveals the way in which humans deal

with physical limitations to be able to produce and process a potentially unbounded number of words.

Christiansen and Chater provided an integrated framework to describe both the cognitive constraints

affecting STM in language processing – what they call the “now-or-never bottleneck” – and the chunking

strategy enacted to cope with them, which they refer to as “chunk-and-pass” mechanism (Christiansen

and Chater, 2016). They collected a wide set of empirical results, describing the bottleneck as mainly

arising from our short memory for auditory signals, the speed of new incoming linguistic input, and from

memory limitations on sequence recalling tasks. According to the authors, to deal with these constraints

the human cognitive system relies on a series of strategies. That is, as we receive new linguistic input,

we eagerly process it by grouping units into chunks, and passing them at a more abstract level of rep-

resentation; once a chunk has been integrated into the available knowledge hierarchy (Figure 1), a new

one can be processed and again passed at higher representation levels. This model entails that chunking

is required to store information for a longer time while a single word would be an easily forgotten piece

of de-contextualized information, grouping words together produces a meaningful abstract image, which

can be related to the following incoming concept. This mechanism would thus guarantee effective and

efficient communication, profoundly shaping the structure of language itself.

1.4 Contribution

The primary aim of this work is to test the hypothesis that dependency distances in languages are dis-

tributed following two exponential regimes, modelled by means of a two-regime geometric distribution,

and that the break-point between the regimes is similar across languages. The proposal of two regimes

is motivated both empirically and theoretically. On one hand, it builds on the observations by Ferrer-

i-Cancho concerning a change in probabilistic decay (Ferrer-i-Cancho, 2004). On the other hand, the

existence of two different regimes would be consistent with the widely accepted idea that words are

being chunked in order to be processed (Christiansen and Chater, 2016). Indeed, in a commentary

on the work by Christiansen & Chater, Ferrer-i-Cancho had suggested a relation between his empirical

observation and their processing framework, linking the chunking mechanism with the puzzling slowing

down of probability decay in syntactic dependency distances after 4-5 words (Christiansen and Chater,
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2016). Verifying this hypothesis opens the path for a deeper understanding of the distribution of syn-

tactic dependency distances, and of how this could be influenced and shaped by universal constraints

on memory. Concerning the first point, we believe our work will contribute to the existing literature on

the distribution of dependency distances, finding a common ground to previous results by accounting

for the effect of sentence length, context, and annotation style (Ferrer-i-Cancho, 2004; Ferrer-i-Cancho

and Liu, 2014; Jiang and Liu, 2015). In fact, we consider both the syntactic structure of sentences with

a specific length, and of various sentence lengths jointly, performing the analysis on a parallel corpus

following two alternative syntactic dependency annotation schemes. The second point is related to one

of the free parameters of our models, namely the break-point between the two regimes. If the change

in probability is a mirror of the chunking mechanism enacted in language processing, the break-point

we estimate could be a visible and direct statistical marker of the hypothesis advanced by Christiansen

and Chater (2016). In particular, it may approximate the distance after which physical and cognitive

limitations become too pressing, and the current chunk needs to be closed and encoded in memory, in

order not to be overwritten by forthcoming information. Therefore, looking at the homogeneity of the

estimated break-point values across languages could shed light on general cognitive patterns. Formally,

we aim to verify the following two-fold hypothesis

• 𝐻1. Syntactic dependency distances are distributed following two exponential regimes.

• 𝐻2. The break-point between the two regimes exhibits low variation across languages and within

a language.

Additionally, we further investigate the relation between the DDm principle and sentence length (Ferrer-

i-Cancho and Gómez-Rodríguez, 2021), analysing how it is reflected in the shape of the distribution

of syntactic dependency distances. We use Ω, a recently introduced optimality score, to quantify the

intensity of DDm (Ferrer-i-Cancho et al., 2022).

1.5 Structure

The remainder of the article is organized as follows. In order to test 𝐻1, we compare the fit of the

proposed two-regime model against an ensemble of alternative distributions. Section 2 presents the

definitions of the models for the distribution of syntactic dependency distances. Section 3 provides a

detailed description of the data while Section 4 details the methodology. Section 5 reports the results of

the model selection on sentences of languages from distinct families and investigates the relation between

the best model and the optimality of syntactic dependency distances. Finally, section 6 discusses the

findings, focusing on the verification of our hypotheses and on other general patterns while accounting

for the observed cross-linguistic variability. Section 7 summarises the major conclusions of this article.
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2 Models

We use 𝑝(𝑑) to refer to the probability that two linked words are at distance 𝑑. 𝑑 ∈ [1, 𝑛) in a sentence

of 𝑛 words. See Table 1 for a summary of the ensemble of models and Figure 2 for the shape of the

models against an artificial random sample of their probability distributions (details on the generation of

these samples are given in Appendix C). Here we present a series of well-known models (e.g., geometric

distribution, right-truncated zeta distribution) and non-standard models for 𝑝(𝑑). The details of the

derivation of the non-standard models are given in Appendix A.

Table 1: Models for the distribution of syntactic dependency distances. 𝐾 is the number of free parameters. Refer to

Appendix A for the derivation of the equations.

Model Function 𝐾 Definition

0 Null model 0 1
(𝑛2)

(𝑛 − 𝑑) if 𝑑 ∈ [1, 𝑛)
0.0 Null model 1 1

(𝑑𝑚𝑎𝑥+1
2 ) (𝑑𝑚𝑎𝑥 + 1 − 𝑑) if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥]

0.1 Extended Null model 0
∑𝑚𝑎𝑥 (𝑛)

𝑛=𝑚𝑖𝑛(𝑛)
𝑛−𝑑
(𝑛2)

𝑝(𝑛) if 𝑑 ∈ [1, 𝑚𝑎𝑥(𝑛))
1 Geometric 1 𝑞(1 − 𝑞)𝑑−1 if 𝑑 ≥ 1

2 Right-truncated geometric 2 𝑞 (1−𝑞)𝑑−1
1−(1−𝑞)𝑑𝑚𝑎𝑥

if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥]

3 Two-regime geometric 3
{
𝑐1 (1 − 𝑞1)𝑑−1 if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥]
𝑐2 (1 − 𝑞2)𝑑−1 if 𝑑 ≥ 𝑑∗

4 Two-regime - right-truncated geometric 4
{
𝑐1 (1 − 𝑞1)𝑑−1 if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥]
𝑐2 (1 − 𝑞2)𝑑−1 if 𝑑 ∈ [𝑑∗, 𝑑𝑚𝑎𝑥]

5 Right-truncated zeta distribution 2 𝑑−𝛾

𝐻 (𝑑𝑚𝑎𝑥 ,𝛾) if 𝑑 ≥ 1

6 Two-regime zeta-geometric 3
{
𝑐1𝑑

−𝛾 if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥]
𝑐2 (1 − 𝑞)𝑑−1 if 𝑑 ≥ 𝑑∗

7 Two-regime - right-truncated zeta-geometric 4
{
𝑐1𝑑

−𝛾 if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥]
𝑐2 (1 − 𝑞)𝑑−1 if 𝑑 ∈ [𝑑∗, 𝑑𝑚𝑎𝑥]
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Figure 2: 𝑝(𝑑), the probability of 𝑑 in a model versus a random sample of itself. The random sample has size 104. 𝑛 = 20

(𝑑𝑚𝑎𝑥 = 19) for the right-truncated models. Thus Model 0 is the same as Model 0.0 here. 𝑑∗ = 4 for the two-regime models.

For the equations of the models refer to Table 1, while for the complete list of parameter values refer to Table 17.

The first model that we consider is Model 0, the null model obtained when a real sentence is shuffled at

random or, equivalently, when there is no word order constraint (and all the 𝑛! word orderings are equally

likely). Then (Ferrer-i-Cancho, 2004)

(1) 𝑝(𝑑) =
{

1

(𝑛2)
(𝑛 − 𝑑) if 𝑑 ∈ [1, 𝑛)

0 otherwise.

The formulation of Model 0 in 1 assumes that the maximum distance is 𝑛 − 1 and that sentence length

is unique, two assumptions that are too restrictive for our model selection setting. First, we do not know

if actual maximum value of 𝑑 is 𝑛 − 1 or a lower value that is unknown to us (but could be set by some

memory limitations of the human brain). Second, we are interested in the best model by fixing sentence

length (where sentence length is unique) and also when considering jointly all sentences of any length

for a given language (where sentence length varies). Thus, for fitting purposes, we distinguish between

two specifications of Model 0. In the first one, Model 0.0, we relax the first assumption and give the

model the freedom to select a maximum distance that does not need to be 𝑛−1, the theoretical maximum
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value of 𝑑. Accordingly, Model 0.0 is defined as

𝑝(𝑑) =
{

1

(𝑑𝑚𝑎𝑥+1
2 ) (𝑑𝑚𝑎𝑥 + 1 − 𝑑) if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥]

0 otherwise

where 𝑑𝑚𝑎𝑥 is the only free parameter. The second specification of Model 0, Model 0.1 adapts the initial

Model 0 to sentences of mixed lengths. Suppose that 𝑝(𝑛) is the proportion of sentences having length

𝑛, and min(𝑛) and 𝑚𝑎𝑥(𝑛) are the minimum and maximum observed values of 𝑛 in the sample. Then

Model 0.1 is defined as

𝑝(𝑑) =
{ ∑𝑚𝑎𝑥 (𝑛)

𝑛=𝑚𝑖𝑛(𝑛)
𝑛−𝑑
(𝑛2)

𝑝(𝑛) if 𝑑 ∈ [1, 𝑚𝑎𝑥(𝑛))

0 otherwise.

The following models follow the same design principle of Model 0.0 and, for the sake of simplicity, do

not introduce 𝑛 into the definition of the model as Model 0 or Model 0.1.

Given that distances are discrete, an exponential decay can be modeled with a geometric curve. Thus,

Model 1 is the displaced geometric distribution, defined as

(2) 𝑝(𝑑) =
{
𝑞(1 − 𝑞)𝑑−1 if 𝑑 ≥ 1

0 otherwise,

where 𝑞 is the only free parameter. When 𝑑 ≥ 𝑛, the displaced geometric assumes that 𝑝(𝑑) > 0 while

in a real sentence 𝑝(𝑑) = 0. For this reason, we also consider Model 2, that is a right-truncated version

in which non-zero probability mass is restricted to 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥], i.e.

𝑝(𝑑) =
{

𝑞 (1−𝑞)𝑑−1
1−(1−𝑞)𝑑𝑚𝑎𝑥

if 𝑑 ∈ [1, 𝑑𝑚𝑎𝑥)
0 otherwise,

The two-regime models are obtained by splitting the range of variation of 𝑑 into two overlapping regimes,

one for 1 ≤ 𝑑 ≤ 𝑑∗ and another for 𝑑 ≥ 𝑑∗, where 𝑝′(𝑑) and 𝑝′′(𝑑), the probability mass in the first and

in the second regime respectively, satisfy 𝑝′(𝑑∗) = 𝑝′′(𝑑∗). Accordingly, Model 3 is a generalization of

Model 1 that consists of two regimes, and is defined as

𝑝(𝑑) =

𝑐1(1 − 𝑞1)𝑑−1 if 𝑑 ∈ [1, 𝑑∗]
𝑐2(1 − 𝑞2)𝑑−1 if 𝑑 ≥ 𝑑∗

0 otherwise,

where 𝑐1 and 𝑐2 are normalization factors defined as

𝑐1 =
𝑞1𝑞2

𝑞2 + (1 − 𝑞1)𝑑∗−1(𝑞1 − 𝑞2)
(3)

𝑐2 = 𝜏𝑐1

𝜏 =
(1 − 𝑞1)𝑑

∗−1

(1 − 𝑞2)𝑑∗−1 .(4)

Thus, the only free parameters of Model 3 are 𝑞1, 𝑞2 and 𝑑∗.
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Model 4 is a generalization of Model 3 by right truncation, that is

𝑝(𝑑) =

𝑐1(1 − 𝑞1)𝑑−1 if 𝑑 ∈ [1, 𝑑∗]
𝑐2(1 − 𝑞2)𝑑−1 if 𝑑 ∈ [𝑑∗, 𝑑𝑚𝑎𝑥],
0 otherwise,

where 𝑐1 and 𝑐2 are normalization factors defined as

(5) 𝑐1 =
𝑞1𝑞2

𝑞2 + (1 − 𝑞1)𝑑∗−1(𝑞1 − 𝑞2 − 𝑞1(1 − 𝑞2)𝑑𝑚𝑎𝑥−𝑑∗+1)
.

and 𝑐2 = 𝜏𝑐1 with 𝜏 defined as in 4. The only free parameters of Model 4 are 𝑞1, 𝑞2, 𝑑∗ and 𝑑𝑚𝑎𝑥 .

Next, following previous on syntactic dependency distances (Liu, 2007), we also consider Model 5, a

power-law model that is a right-truncated zeta distribution with parameters 𝛾 and 𝑑𝑚𝑎𝑥 (Wimmer and

Altmann, 1999), that is defined as follows

𝑝(𝑑) =
{

𝑑−𝛾

𝐻 (𝑑𝑚𝑎𝑥 ,𝛾) if 𝑑 ≥ 1

0 otherwise,

where

𝐻 (𝑑𝑚𝑎𝑥 , 𝛾) =
𝑑𝑚𝑎𝑥∑︁
𝑘=1

1

𝑘𝛾

is the generalized harmonic number of order 𝛾 of 𝑑𝑚𝑎𝑥 . Finally, we introduce Models 6 and 7, that are

also composed of two regimes, the first one distributed as a right-truncated power-law and the second

one as a geometric curve. Model 6 is defined as

𝑝(𝑑) =

𝑐1𝑑

−𝛾 if 𝑑 ∈ [1, 𝑑∗]
𝑐2(1 − 𝑞)𝑑−1 if 𝑑 ≥ 𝑑∗

0 otherwise,

where 𝑐1 and 𝑐2 are normalization factors defined as

𝑐1 =
𝑞

𝑞𝐻 (𝑑∗, 𝛾) + 𝑑∗−𝛾 (1 − 𝑞)(6)

𝑐2 = 𝜏𝑐1

𝜏 =
𝑑∗

−𝛾

(1 − 𝑞)𝑑∗−1 .(7)

Model 7, the right-truncated version of Model 6, is defined as

𝑝(𝑑) =

𝑐1𝑑

−𝛾 if 𝑑 ∈ [1, 𝑑∗]
𝑐2(1 − 𝑞)𝑑−1 if 𝑑 ∈ [𝑑∗, 𝑑𝑚𝑎𝑥]
0 otherwise,

where

(8) 𝑐1 =
𝑞

𝑞𝐻 (𝑑∗, 𝛾) + 𝑑∗−𝛾 (1 − 𝑞 − (1 − 𝑞)𝑑𝑚𝑎𝑥−𝑑∗+1)
,

and 𝑐2 = 𝜏𝑐1 with 𝜏 defined as in 7. The only free parameters of Model 6 are 𝛾, 𝑑∗ and 𝑞. Model 7 adds

a third free parameter that is 𝑑𝑚𝑎𝑥 .
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2.1 Speed of decay

When plotted in log-linear scale, an exponential curve becomes a line. For a geometric model (2), the

slope of that line is log(1 − 𝑞) since

log 𝑝(𝑑) = log 𝑞(1 − 𝑞)𝑑−1

= 𝑑 log(1 − 𝑞) + log
𝑞

1 − 𝑞 .

That slope conveys information about the speed of probability decay. Such slope is a decreasing function

of 𝑞 (Figure 3), meaning that as 𝑞 increases the slope becomes more negative, and probability decays

faster. In light of this fact, we consider parameters 𝑞 (Models 1 and 2) as well as 𝑞1 and 𝑞2 (Models 3-4)

to account for the speed of exponential decay in the two regimes of Models 3-4, and we refer to them as

“slope parameters” for simplicity.
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0
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Figure 3: Slope of a geometric curve in log-linear scale as a function of its parameter 𝑞 for 𝑞 ∈ [0, 1).
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3 Material

Table 2: The languages, their linguistic family and their writing system.

Language Family Writing system

Arabic Afro-Asiatic Arabic
Chinese Sino-Tibetan Han
Czech Indo-European Latin
English Indo-European Latin
Finnish Uralic Latin
French Indo-European Latin
German Indo-European Latin
Hindi Indo-European Devanagari
Icelandic Indo-European Latin
Indonesian Austronesian Latin
Italian Indo-European Latin
Japanese Japonic Japanese
Korean Koreanic Hangul
Polish Indo-European Latin
Portuguese Indo-European Latin
Russian Indo-European Cyrillic
Spanish Indo-European Latin
Swedish Indo-European Latin
Thai Kra-Dai Thai
Turkish Turkic Latin

We extract syntactic dependency distances from a parallel subset of 20 languages from the Universal

Dependencies collection (Nivre et al., 2017). See Table 2 for the languages, their linguistic family

and their writing system. This subset is parallel in the sense that it contains the same sentences

translated into every language. We use version 2.6, available here. Parallelism is crucial for robust

cross-linguistic comparisons, as context can largely influence various aspects of language, including

dependency structure. Another factor that shall be considered is annotation style, as there is no univocal

way to generate syntactic dependency trees starting from a sentence. For this reason, we compare two

different annotation styles: Universal Dependencies (Nivre et al., 2017) and the alternative Surface

Syntactic Universal Dependencies (Gerdes et al., 2018). We refer to the two resulting versions of the

collection as PUD and PSUD. See Table 3 and Table 4 for a summary of the main statistical features

of PUD and PSUD respectively. It can be seen that mean dependency distance values (mean(𝑑)) are

smaller in PSUD.
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Table 3: Summary of PUD collection. #𝑠 stands for number of sentences, #𝑑 stands for number of distances.

Language #𝑠 #𝑑 min(𝑑) mean(𝑑) max(𝑑) min(𝑛) mean(𝑛) max(𝑛)

Arabic 995 17514 1 2.30 30 3 18.60 50
Czech 995 14976 1 2.39 29 3 16.05 44
German 995 17544 1 3.11 42 4 18.63 50
English 995 17711 1 2.53 31 4 18.80 56
Finnish 995 12465 1 2.24 21 3 13.53 39
French 995 21165 1 2.52 36 4 22.27 54
Hindi 995 20517 1 3.30 42 4 21.62 58
Indonesian 995 16311 1 2.26 27 3 17.39 47
Icelandic 995 15860 1 2.32 34 3 16.94 52
Italian 995 20413 1 2.48 35 3 21.52 60
Japanese 995 24703 1 2.97 65 4 25.83 70
Korean 995 13978 1 2.75 37 3 15.05 43
Polish 995 14720 1 2.23 27 3 15.79 39
Portuguese 995 19808 1 2.53 34 4 20.91 58
Russian 995 15369 1 2.27 32 3 16.45 47
Spanish 995 19986 1 2.50 32 3 21.09 58
Swedish 995 16119 1 2.47 31 4 17.20 49
Thai 995 21034 1 2.44 38 4 22.14 63
Turkish 995 13727 1 2.91 34 3 14.80 37
Chinese 995 17501 1 3.09 39 3 18.59 49

Table 4: Summary of PSUD collection. #𝑠 stands for number of sentences, #𝑑 stands for number of distances.

Language #𝑠 #𝑑 min(𝑑) mean(𝑑) max(𝑑) min(𝑛) mean(𝑛) max(𝑛)

Arabic 995 17514 1 2.05 30 3 18.60 50
Czech 995 14976 1 2.11 29 3 16.05 44
German 995 17544 1 2.82 38 4 18.63 50
English 995 17711 1 2.12 31 4 18.80 56
Finnish 995 12465 1 2.04 22 3 13.53 39
French 995 21165 1 2.13 35 4 22.27 54
Hindi 995 20517 1 3.04 38 4 21.62 58
Indonesian 995 16311 1 2.00 27 3 17.39 47
Icelandic 995 15860 1 1.92 34 3 16.94 52
Italian 995 20413 1 2.10 35 3 21.52 60
Japanese 995 24703 1 2.73 67 4 25.83 70
Korean 995 13978 1 2.70 38 3 15.05 43
Polish 995 14720 1 2.00 27 3 15.79 39
Portuguese 995 19808 1 2.13 34 4 20.91 58
Russian 995 15369 1 2.05 32 3 16.45 47
Spanish 995 19986 1 2.13 31 3 21.09 58
Swedish 995 16119 1 2.07 31 4 17.20 49
Thai 995 21034 1 2.20 39 4 22.14 63
Turkish 995 13727 1 2.86 33 3 14.80 37
Chinese 995 17501 1 2.99 39 3 18.59 49

4 Methodology

The code for this work was written both in R and python, and is available here.

4.1 Model selection

We here describe the model selection procedure implemented to test 𝐻1. This methodology is validated

with the help of artificially generated random samples from a given distribution (Appendix C).
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Optimal parameters for each model are estimated by maximum likelihood. Then, the best model is

selected according to Information Criteria (Anderson and Burnham, 2004). In real languages (this

section), models are compared through Akaike Information Criterion (AIC). In artificially generated

random samples (Appendix C), the best model is better selected through Bayes Information Criterion

(BIC) because the true data generating process is known. BIC differs from AIC by relying on the

assumption that the real distribution is among the tested ones (Wagenmakers and Farrell, 2004). For a

given model, we use the following definitions of these scores (Anderson and Burnham, 2004)

𝐴𝐼𝐶 = −2L + 2𝐾
𝐾

𝑁 − 𝐾 − 1

𝐵𝐼𝐶 = −2L + 𝐾 log 𝑁,(9)

where 𝐾 is the number of parameters of the model and 𝑁 is the sample size. With respect to AIC, the

criterion proposed by Schwarz (BIC) applies a stronger penalty for the number of parameters.

Given that both AIC and BIC are measures of information loss, the best model for a sample is the

one minimizing the selected score. We aim to find the best model for a sample of 𝑁 distances

{𝑑1, 𝑑2, ..., 𝑑𝑖 , ..., 𝑑𝑁 }, where min(𝑑) and max(𝑑) are, respectively, the minimum and maximum ob-

served distances, and 𝑓 (𝑑) is the frequency of distance 𝑑 in the sample. Then the sample size is

𝑁 =

𝑚𝑎𝑥 (𝑑)∑︁
𝑖=1

𝑓 (𝑑𝑖) =
𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑).

The log-likelihood functions of the models are summarized in Table 13. See Appendix B for a derivation

of the log-likelihood functions for each model.

4.1.1 Parameter estimation

Maximum likelihood estimation (MLE) algorithms require one to specify the range of variation of the

parameters as well as proper initial values. It is well-known that MLE methods are highly sensitive to the

choice of the starting values, as they may incur local optima when minimizing the minus log-likelihood

function (Myung, 2003). Here we explain the criteria used to select the initial value and the range of

variation of the parameters, which are summarised in Table 5 and Table 6 respectively. Let 𝑥𝑖𝑛𝑖𝑡 be the

initial value of parameter 𝑥. Also, let max𝑖 (𝑑) be the 𝑖 − 𝑡ℎ largest value of 𝑑 in the sample, so that

max1(𝑑) = 𝑚𝑎𝑥(𝑑). Similarly, let min𝑖 (𝑑) be the 𝑖 − 𝑡ℎ smallest value of 𝑑 in the sample, so that

min1(𝑑) = 𝑚𝑖𝑛(𝑑).
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Table 5: The initial values of the parameters for maximum likelihood estimation. Here Model 0 refers to model 0.0.

Model 𝑑𝑚𝑎𝑥 𝑞 𝑞1 𝑞2 𝑑∗ 𝛾

0 max(𝑑) - - - - -
1 - 𝑞𝑖𝑛𝑖𝑡 - - - -
2 max(𝑑) 𝑞𝑖𝑛𝑖𝑡 - - - -
3 - - 𝑞1𝑖𝑛𝑖𝑡 𝑞2𝑖𝑛𝑖𝑡 5 -
4 max(𝑑) - 𝑞1𝑖𝑛𝑖𝑡 𝑞2𝑖𝑛𝑖𝑡 5 -
5 max(𝑑) - - - - 𝛾𝑖𝑛𝑖𝑡
6 - 𝑞𝑖𝑛𝑖𝑡 - - 5 𝛾𝑖𝑛𝑖𝑡
7 max(𝑑) 𝑞𝑖𝑛𝑖𝑡 - - 5 𝛾𝑖𝑛𝑖𝑡

The rationale for the choices in Table 5 and Table 6 is as follows

• 𝑑𝑚𝑎𝑥 . The maximum observed distance is both the starting point and smallest admissible value,

while there is no upper bound.

• 𝑞. In the geometric models (Models 1 and 2), the initial value for 𝑞, 𝑞1𝑖𝑛𝑖𝑡 , is the maximum

likelihood estimator, i.e. the inverse of the mean observed distance 𝑞𝑖𝑛𝑖𝑡 = 1/𝑚𝑒𝑎𝑛(𝑑). The

bounds are set so that 𝑞 ∈ (0, 1) to avoid values out of the domain of the log-likelihood function.

In Models 6 and 7, the initial value of 𝑞 for the second regime is set to the maximum likelihood

estimator 1/𝑚𝑒𝑎𝑛(𝑑) of an ideal geometric distribution, but restricting the mean to distances

greater than 𝑑∗.

• 𝑞1 and 𝑞2. These two parameters are both initialized by first running a linear regression on log 𝑝(𝑑)

and 𝑑, for 𝑑 ≤ 𝑑∗ in the case of 𝑞1𝑖𝑛𝑖𝑡 , and for 𝑑 ≥ 𝑑∗ in the case of 𝑞2𝑖𝑛𝑖𝑡 . Then, the respective

slopes 𝛽1 and 𝛽2 are used to compute the initial values via 𝑞1𝑖𝑛𝑖𝑡 = 1 − 𝑒𝛽1 and 𝑞2𝑖𝑛𝑖𝑡 = 1 − 𝑒𝛽2 .

Notice that, as the tail of the distribution is noisy, the estimated slope sometimes results in a

0 or even a positive value for values of 𝑑∗ very close to max(𝑑). When that happened, the

corresponding 𝑞2𝑖𝑛𝑖𝑡 was set to its lower bound. As in 𝑞, the bounds are set so that 𝑞1, 𝑞2 ∈ (0, 1).

• 𝑑∗. The initial value is 5, as suggested by the visual inspection of the plots. The parameter is

bounded to vary between min2(𝑑) and max2(𝑑), based on the minimum requirement on the size

of the two regimes (section 4.1.3). Indeed, by setting 𝑑∗ to either min1(𝑑) or to max1(𝑑), one

of the two regimes would only be composed by one isolated observation, from which no trend

can be inferred. Incidentally, the DDm principle, predicts that min2(𝑑) = 2 if 𝑛 is large enough

(Ferrer-i-Cancho, 2004).

• 𝛾. For Model 5, the initial value of the MLE estimator of the exponent of a continuous power-law

(Newman, 2005):

𝛾𝑖𝑛𝑖𝑡 = 1 + 𝑁
[

𝑁∑︁
𝑖=1

𝑑𝑖

𝑚𝑖𝑛(𝑑)

]−1
.
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For Models 6 and 7 (where only the first regime follows a zeta distribution), 𝛾𝑖𝑛𝑖𝑡 is computed over

the distances up to 𝑑∗.

Table 6: The lower (low) and upper (up) bounds of the parameters for maximum likelihood estimation. 𝜖 = 10−3. Here

Model 0 refers to Model 0.0.

𝑑𝑚𝑎𝑥 𝑞 𝑞1 𝑞2 𝑑∗ 𝛾

Model low up low up low up low up low up low up

0 max(𝑑) ∞ - - - - - - - - - -
1 - - 𝜖 1 − 𝜖 - - - - - - - -
2 max(𝑑) ∞ 𝜖 1 − 𝜖 - - - - - - - -
3 - - - - 𝜖 1 − 𝜖 𝜖 1 − 𝜖 min2 (𝑑) max2 (𝑑) - -
4 max(𝑑) ∞ - - 𝜖 1 − 𝜖 𝜖 1 − 𝜖 min2 (𝑑) max2 (𝑑) - -
5 max(𝑑) ∞ - - - - - - - - 0 ∞
6 - - 𝜖 1 − 𝜖 - - - - min2 (𝑑) max2 (𝑑) 0 ∞
7 max(𝑑) ∞ 𝜖 1 − 𝜖 - - - - min2 (𝑑) max2 (𝑑) 0 ∞

4.1.2 Maximum likelihood estimation (MLE)

We considered two MLE methods in R: mle() from stats2 and mle2() from the bbmle package

(Bolker, 2007). The base R implementation, mle(), may explore values out of the specified bounds

thus resulting in errors. Where this is the case, we resort to the enhanced, more robust version of the

optimizer, mle2(), which is able to return a result even if the algorithm does not reach convergence.

Both mle2a() and mle2() optimize on a continuous space. Hence, for the discrete parameters, i.e. 𝑑∗

and 𝑑𝑚𝑎𝑥 , we retrieved their most likely value by exhaustively exploring all values included between

their theoretical bounds. In this way, we also decrease the complexity of MLE by reducing the number of

parameters to be optimized through the call to mle() or mle2(). Thus, for each value of 𝑑∗ (and 𝑑𝑚𝑎𝑥 in

the right-truncated models) we optimized the remaining parameters, and finally selected the parameters

combination resulting in the highest log-likelihood.

4.1.3 Requirements for two-regime models

In order to fit a double-regime model to a data sample, we need 𝑁 ≥ 3. In fact, at least two points are

needed in order to infer a speed of probability decay within a regime, meaning that each regime has to

contain at least 2 distinct observations. Given that the value assigned to the break-point is common to

the two regimes, this results in a requirement of 𝑁 ≥ 3. See Figure 4 for an example of this scenario,

displaying the distribution of syntactic dependency distances for sentences of 4 words in Italian, annotated

according to SUD. Notice that this requirement directly implies that sentences with 𝑛 < 4 are excluded

from the model selection procedure.
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Figure 4: Syntactic dependency distance distribution of sentences with 4 words in Italian, annotated according to SUD. Only

three unique values of 𝑑 have been observed.

4.1.4 Representativeness

When performing model selection on sentences of specific lengths from a certain language, we obtain

a set of best models, one for each sentence length. To summarize this information and obtain a

single best model for each language, we consider the most frequent best model within that language.

However, this raises the concern of whether all best models are equally reliable, as some of them are

estimated on a single sentence. For instance, very long sentences, which are normally rare, are thus

likely to be underrepresented in the data. On the other hand, setting a single specific threshold on the

minimum number of sentences required for a sentence length to be included in the voting procedure

would mistakenly hide important aspects of the analysis. In fact, the suitable threshold should depend

on sentence length itself. Consider a very long sentence, composed of 50 words, and a very short one,

of only 4 words. While – keeping fixed the syntactic structure – the first one could appear with 50!

different re-orderings, the second one could only be written in 4! possible ways. Thus, a single sentence

observed for 𝑛 = 4 is much more representative (as the expected variability in dependency distance is

lower) for the whole length category than a single one observed for 𝑛 = 50. For this reason, we report the

most frequent best models both when no threshold is set (Table 8) and for increasing representativeness

threshold (Figure 7).

4.2 The Ω optimality score

Ω is a recently introduced optimality score for the closeness of syntactic dependency distances, which

integrated normalization with respect to both a minimum and a random baseline (Ferrer-i-Cancho et al.,

2022). The score is defined as

Ω =
𝐷𝑟𝑙𝑎 − 𝐷

𝐷𝑟𝑙𝑎 − 𝐷𝑚𝑖𝑛

,
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where 𝐷 is the observed sum of dependency distances in a sentence, 𝐷𝑟𝑙𝑎 is the expected sum of

dependency distances in a uniformly random linear arrangement of its words (Ferrer-i-Cancho, 2004,

2019), i.e.

(10) 𝐷𝑟𝑙𝑎 =
𝑛2 − 1

3

and 𝐷𝑚𝑖𝑛 is the sum of dependency distances in a minimum linear arrangement of the words (Esteban

and Ferrer-i-Cancho, 2017; Shiloach, 1979). Both baselines assume that the network structure is fixed.

𝐷 and 𝐷𝑚𝑖𝑛 are computed using the python interface of the Linear Arrangement Library (Alemany-Puig

et al., 2021).

Positive values of Ω indicate that syntactic dependency distances in the sentence are shorter than one

would expect from picking uniformly at random among all the possible 𝑛! orderings. The maximum,

Ω = 1, is reached when 𝐷 = 𝐷𝑚𝑖𝑛. Conversely, a negative value indicates that distances are being

maximized, as they are higher than expected in a random shuffling of words in a sentence. When word

order is random, Ω will take values tending to 0. ⟨Ω⟩ is the average value of Ω over individual sentences.

5 Results

We fit the models introduced in the Section 2 to a parallel collection of texts from 20 languages called

PUD, that has been annotated with syntactic dependencies as in Figure 1. To control for annotation style

we consider two variants, PUD with the original annotation style (Nivre et al., 2017) and PSUD, that

follows the alternative SUD annotation style (Gerdes et al., 2018). Refer to section 3 for further details

on the data, and to section 4.1 for a complete description of the model selection procedure.

This section is organized as follows. First, we report on the best models (Section 5.1), the break-points

of the two-regime models (Section 5.2) and the relationship between slope parameters (𝑞1 and 𝑞2)

for each language (Section 5.3), both by considering fixed and mixed sentence lengths. We define

representativeness threshold, shortly representativeness, as the minimum number of distinct sentences

with a certain length for such length to be included in model selection (a further justification of this

threshold is found in Section 4.1.4. Section 5.1 investigates the robustness of conclusions with respect

to sample representativeness. Detailed tables of the estimated parameters, Akaike Information Criterion

(AIC) scores, and AIC differences for both collections can be found in Appendix D. Second, we will

investigate the relationship between the best model and the degree of optimality of syntactic dependency

distances on sentences of fixed length (Section 5.4. Notice that we often refer jointly to Models 3 and

4 (6 and 7) as 3-4 (6-7), given that they model the same probability distribution with or without a

right-truncation point.
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5.1 Model selection

The best model to describe syntactic dependency distances independent of sentence length is composed

of two regimes in every language and collection (Table 7). Models 3-4 dominate over Models 6-7,

with 13/20 languages in PUD and 11/20 in PSUD having Model 3 or 4 as the best one. We find overall

agreement between the two annotation styles, both in terms of best model and in terms of right-truncation.

The exceptions to this agreement are Indonesian and Japanese – for which PUD yields an exponential

decay in the first regime, while PSUD identifies a power-law one – and Chinese, English, and Italian,

where the best model in PUD and PSUD differs by right truncation. In Figure 5, we show how the best

models in PUD are able to accurately capture the bulk of the distribution, with some variability left in

the tail. The equivalent figure for PSUD can be found in Appendix D.

Table 7: Best model for the distribution of syntactic dependency distances in sentences of mixed lengths for every language

and collection. Models 3-4 are marked with pink and Models 6-7 with blue to ease visualization.

Language PUD PSUD

Arabic 7 7
Chinese 6 7
Czech 3 3
English 3 4
Finnish 6 6
French 4 4
German 3 3
Hindi 7 7
Icelandic 3 3
Indonesian 3 7

Language PUD PSUD

Italian 4 3
Japanese 4 7
Korean 7 7
Polish 3 3
Portuguese 3 3
Russian 3 3
Spanish 4 4
Swedish 3 3
Thai 6 6
Turkish 7 7

Table 8: Most voted best model for the distribution of syntactic dependency distances in sentences of fixed lengths, for

every language and collection. The most voted best model is computed aggregating models by type, thus counting together

the occurrences in which Models 3-4 (Models 6-7) are the best. Models 3-4 are marked with pink, Model 5 with yellow, and

Models 6-7 with blue to ease visualization.

Language PUD PSUD

Arabic 5 5
Chinese 5 5
Czech 3-4 3-4
English 3-4 3-4
Finnish 6-7 6-7
French 3-4 3-4
German 3-4 3-4
Hindi 6-7 6-7
Icelandic 3-4 3-4
Indonesian 3-4 5

Language PUD PSUD

Italian 3-4 3-4
Japanese 3-4 6-7
Korean 6-7 6-7
Polish 3-4 5
Portuguese 3-4 3-4
Russian 3-4 5
Spanish 3-4 3-4
Swedish 3-4 3-4
Thai 5 5
Turkish 6-7 6-7

The best model for sentences of fixed lengths shows some variability for short and long sentences

(Figure 6). Nevertheless, a double regime model is the most frequent best one across sentence lengths
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in 17/20 languages in PUD (including a tie between Model 5 and Models 6-7 in Chinese), and in 14/20

languages in PSUD (Table 8). Within the languages for which a two-regime model is the best one,

Models 3-4 win in 13/17 languages in PUD, and in 9/14 in PSUD. Once again, we find high consistency

between annotation styles, with the exceptions of Indonesian, Polish, and Russian, for which PSUD

yields Model 5 as the most frequent best one (while PUD yields models 3-4), and Japanese, for which

PUD and PSUD differ in the type of two-regime model. Finally, Model 5 is the most frequent best one

in both collections for Arabic, Chinese, and Thai. However, Figure 7 shows how the most voted best

model ceases to be Model 5 in some instances of both PUD and PSUD when the representativeness of

a sentence length is taken into account. The only languages in which Model 5 is consistently the most

frequent best one even after imposing an arbitrary high threshold are Thai, Indonesian, and Arabic in

PSUD. Arabic shows a border-line behaviour in PUD, with Model 5 being consistently the most voted

only up to a certain threshold value. Finally, a comparison of the actual distribution against the best

model in sentences of fixed characteristic length is shown in Appendix E.

5.2 The break-point

When looking at languages globally, meaning considering jointly sentences of any length, we find that

the break-point 𝑑∗ always takes small values – ranging between 2 and 7 – and has a quite small standard

deviation (Figure 8 and Table 9), meaning that its value is similar across languages. This is especially true

for Models 3-4 and the PSUD collection: out of 11 languages having Models 3-4 as the best ones in this

collection, 9 have an estimated break-point at 𝑑∗ = 4 (Figure 8). In PUD these models have an average

𝑑∗ value of 5, but with some more variability across languages. In both types of two regime models

median and mean values are virtually the same, independently of annotation style, providing additional

evidence for the low variance of 𝑑∗ (Table 9). Checking the distribution of 𝑑∗ within a language allows

us to verify whether global values (found when mixing sentence lengths), namely the bars in Figure 8,

are good approximations of the break-points actually observed in real sentences of any fixed length. We

display the distribution of 𝑑∗ across sentence lengths for each language in the same figure as a violin plot.

Once again the median is very close to the mean in almost every combination of two-regime model and

annotation style – with the exception of Models 6-7 in PSUD – further supporting 𝐻2 (Table 10). Then,

notice that where Models 3-4 are the best we observe relatively narrow distributions, skewed towards

low values and showing one or a few modes (Figure 8). In particular, the global value of 𝑑∗ is virtually
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Figure 5: 𝑝(𝑑), the probability that a dependency link is formed between words at distance 𝑑 according to the data and the

best model for every language in PUD.
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(b) PSUD collection

Figure 6: Distribution of best model for each sentence length on top, with reference to the best model on mixed sentence

lengths at the bottom. (a) PUD collection. (b) PSUD collection. In both (a) and (b) the empty tiles mark lengths for which no

sentence was observed, or on which model selection was not performed given the minimum requirement to fit a double-regime

model, described in section 4.1.3. Here Model 0 refers to Model 0.0.
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Figure 7: Most voted best model type across sentence lengths for increasing representativeness threshold. When no threshold

is set (1 minimum sentence), we get the scenario displayed in Figure 6. Ties are counted in favour of models without two

regimes. Here Model 0 refers to Model 0.0.
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always found in correspondence of one of these modal values, confirming its representativeness for the

whole language. Considering that sentences can reach up to a minimum of 37 (Turkish) and a maximum

of 70 words (Japanese) (Table 3) the observed variation ranges in Models 3-4 are quite small, with values

going up to roughly 𝑑∗ = 13. On the other hand, within languages for which Models 6-7 are the best

when mixing sentence lengths, the distribution of 𝑑∗ across different sentence lengths is generally flatter,

especially in PSUD. Even where values are centered around a mode, this does not correspond with the

break-point estimated globally, with the exception of Hindi. Thus, it appears like the global break-points

estimated in Models 3-4 are good approximations of the values observed within the language, while

estimates of 𝑑∗ in Models 6-7 are less reliable as representations of the actual break-point if there is any.
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Figure 8: Value of 𝑑∗ for mixed sentence lengths (bars) in each language and collection, and its distribution across fixed

sentence lengths (violin plots), color-coded by best model independent of sentence length (namely the best model estimated on

sentences of mixed lengths). Model 0 refers to Model 0.1 in the context of mixed sentence lengths.
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Table 9: Summary statistics of the 𝑑∗ parameter, by annotation style and type of two-regime model, estimated from model

selection on sentences of mixed lengths. The summary is computed over languages where Models 3-4 are the best, where

Models 6-7 are the best, and over all languages where a double-regime model is the best (Models 3-4-6-7). Thus, sample size

is measured in number of languages. 𝑠 stands for sample size, 𝑠𝑑 stands for standard deviation.

Models 𝑠 Min. 1st Qu. Median Mean 3rd Qu. Max. 𝑠𝑑

PUD
3-4 13 3.00 4.00 5.00 5.00 6.00 6.00 1.00
6-7 7 3.00 4.00 5.00 5.14 6.50 7.00 1.57
3-4-6-7 20 3.00 4.00 5.00 5.05 6.00 7.00 1.19

PSUD
3-4 11 3.00 4.00 4.00 4.00 4.00 5.00 0.45
6-7 9 3.00 4.00 5.00 5.00 6.00 7.00 1.41
3-4-6-7 20 3.00 4.00 4.00 4.45 5.00 7.00 1.10

Table 10: Summary statistics of 𝑑∗ parameter, by collection and type of two-regime model, estimated from model selection

on sentences of fixed lengths. The summary is computed over sentence lengths and languages where Models 3-4 are the best,

where Models 6-7 are the best, and over all languages and sentence lengths where a double-regime model is the best (Models

3-4-6-7). Thus, sample size is measured in number of distinct sentence lengths. 𝑠 stands for sample size, 𝑠𝑑 stands for standard

deviation.

Models 𝑠 Min. 1st Qu. Median Mean 3rd Qu. Max. 𝑠𝑑

PUD
3-4 431 2.00 4.00 5.00 5.37 6.00 13.00 1.43
6-7 134 2.00 4.00 6.00 6.28 7.00 18.00 3.03
3-4-6-7 565 2.00 4.00 5.00 5.59 6.00 18.00 1.97

PSUD
3-4 297 3.00 4.00 4.00 4.32 5.00 13.00 1.11
6-7 190 2.00 3.00 5.00 6.21 8.00 20.00 3.73
3-4-6-7 487 2.00 4.00 4.00 5.06 5.00 20.00 2.65
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5.3 Speed of decay

Recall that 𝑞1 and 𝑞2 are the slope parameters of Models 3-4, which quantify the speed of probability

decay. For each language in which a two-regime model is the best, we consider 𝑞1, 𝑞2, and their ratio

𝑞1/𝑞2, where the latter quantity is computed to establish which slope is steeper. It has been suggested

that the probability decay is slower in the 2nd regime (Ferrer-i-Cancho, 2017; Ferrer-i-Cancho, 2004).

When Models 6-7 are the best models, we estimate 𝑞1 of the first regime by fitting the corresponding

double exponential model (Model 3 or 4). When we refer to a slope, we refer to its absolute value.

Where the best model has two regimes, the estimated slope parameters for each regime are fairly similar

across languages (Figure 9 and Table 11). In addition, notice that the ratio 𝑞1/𝑞2 is larger than 1 for

every language and annotation style, and that 𝑞1 and 𝑞2 have a quite small standard deviation (Table 11).

Standard deviation values are practically the same for the two parameters, but 𝑞2 takes much lower

values, meaning that it is relatively more variable than 𝑞1. Moreover – as in the case of the break-point

parameter – median and mean values are virtually the same, for both 𝑞1 and 𝑞2 and independently of

annotation style. The slope estimated in the first regime in PUD is significantly lower than the one

estimated in PSUD (Figure 9 (a)). Moreover, the estimated slopes show a clear pattern, with probability

in the first regime consistently decaying faster compared to the second one. This pattern holds for the

overwhelming majority of sentence lengths within a language, with a few exceptions found for very short

sentences (Figure 10).

Table 11: Summary statistics of 𝑞1 and 𝑞2 parameters and their ratio (𝑞1/𝑞2) for model selection on sentences of mixed

lengths, by annotation style (referred to as collection). Statistics are computed over all sentence lengths and languages for which

a double-regime model is the best. 𝑠𝑑 stands for standard deviation.

Collection Min. 1st Qu. Median Mean 3rd Qu. Max. 𝑠𝑑

𝑞1
PUD 0.43 0.49 0.51 0.52 0.56 0.63 0.05
PSUD 0.44 0.59 0.61 0.61 0.65 0.73 0.06

𝑞2
PUD 0.12 0.20 0.23 0.24 0.26 0.37 0.06
PSUD 0.12 0.21 0.23 0.24 0.26 0.37 0.05

𝑞1/𝑞2
PUD 1.50 1.94 2.15 2.32 2.42 4.40 0.70
PSUD 1.58 2.24 2.52 2.75 2.95 5.09 0.79

5.4 The best model versus the optimality of syntactic dependency distances

Ω is a new closeness score for syntactic dependency distances. The higher its value, the closer the

syntactically related words. Refer to section 4.2 for further details on its properties and computation.
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Figure 9: Distribution of slope parameters 𝑞1 and 𝑞2 and their ratio. Isolated points are labelled with the corresponding

language.

The score takes positive values when syntactic dependency distances are minimized, negative values

when they go against minimization, and values around 0 when there is no pressure in either direction

(Ferrer-i-Cancho et al., 2022). Let ⟨Ω⟩ be the average value of Ω over all sentences with a given length

in a language. See Figure 11 and Figure 12 for the best model for each sentence length (a) and the

corresponding value of ⟨Ω⟩ (b), for PUD and PSUD respectively. First, in sentences of a very few

words, the best model is either Model 0 or one with a single regime, and the values of the optimality

score signal the coexistence of the three possible systems: anti-DDm (orange tiles), no bias (white tiles),

and pro-DDm (purple tiles). Given the definition of the score, we expect that, under the assumption

that Model 0 is the real distribution, ⟨Ω⟩ will take values around 0, as both situations underlie random

word ordering. This expectation is met in 6/8 instances, as displayed in Table 12, and as suggested by

the correspondence between white tiles in (b) and green tiles in (a). The two exceptions are Korean in

PSUD and Polish in PUD, for which the best model is Model 5. Then, for sentences longer than 5-6

words, ⟨Ω⟩ indicates that distances in syntactic structures are always minimized, which is mirrored in

the disappearance of Model 0 and the predominance of the single regime models. Finally, as pressure

for minimization further increases with sentence length, these simpler models are progressively replaced

by the models with two regimes.
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Figure 10: Relation between slope parameters 𝑞1 and 𝑞2 estimated from model selection on fixed sentence lengths. Lengths

for which 𝑞1 ≤ 𝑞2 are colored in red, while those for which 𝑞1 > 𝑞2 are colored in blue. Where the best model was 6 (7), the

first slope was approximated by fitting Model 3 (4) with the original value of 𝑑∗. The empty tiles indicate lengths for which no

sentence was observed, a two-regime model was not the best one, or on which model selection was not performed given the

minimum requirement on the number of observed distance values to fit a double-regime model, described in section 4.1.3.

Table 12: Estimated best model on fixed sentence in collections, languages, and sentence lengths for which | ⟨Ω⟩ − 𝜖 | ≤ 0,

with 𝜖 = 0.1. ⟨Ω⟩ is the average value of Ω over all sentences with a given length in a language.

Collection Language 𝑛 ⟨Ω⟩ Best model

PUD Korean 4 −0.05 0
Czech 4 0.00 0
French 4 0.00 0
Spanish 4 0.00 0
Polish 4 0.08 5
Chinese 4 0.08 0

PSUD Korean 4 −0.10 5
Hindi 4 0.00 0
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(a) Best model for every language and sentence length.
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(b) ⟨Ω⟩ for each language and sentence length: orange signals negative
values, white signals values around 0, and purple signals positive values.

Figure 11: Relation between Ω score and best model in PUD. The barred gray cells indicate the sentence lengths which have

not been observed, or that were excluded from model selection according to the representativeness threshold. Sentence lengths

are cut at 𝑛 = 20 to ease visualization. Model 0 refers to Model 0.0. In (b), orange signals negative values, white signals values

around 0, and purple signals positive values.
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(a) Best model for every language and sentence length.
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(b) ⟨Ω⟩ for each language and sentence length: orange signals negative
values, white signals values around 0, and purple signals positive values.

Figure 12: Relation between Ω score and best model in PSUD. The format is the same as in Figure 11.
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6 Discussion

First, we focus on the two hypotheses object of study, namely that syntactic dependency distances are

distributed following two exponential regimes (𝐻1), and that the break-point shows low variation across

languages (𝐻2). Our results provide strong evidence for both hypotheses in a large group of languages,

mainly Indo-European, consistently across annotation styles. Second, we reflect on the parameters

yielding the best fit and pay attention to the greater steepness of the first regime with respect to the

second one, and the homogeneity of the estimated slopes across languages. Finally, we discuss the

relation between the best estimated model and the closeness of syntactic dependencies as captured by

the optimality score Ω (Ferrer-i-Cancho et al., 2022), and summarize the effect of annotation style.

6.1 The reality of two regimes

6.1.1 The shape of the distribution

As it is often the case, the path to the truth seems to lie in the middle. We could neither generalize

to all languages hypothesis 𝐻1 (supported by 13/20 languages in PUD and by 11/20 in PSUD), first

advanced by Ferrer-i-Cancho (2004), nor fully corroborate the finding that dependency distances are

power-law distributed as reported for Chinese (Liu, 2007). However, we provided evidence for a possible

explanation integrating both: a two-regime model in which the first regime is either exponential or

power-law distributed, and the second one follows an exponential decay. A two-regime model is found in

all languages when mixing sentences of different lengths (Table 7), while two regimes are robustly found

for the majority of languages when specific sentence lengths are considered (Figure 6). However, while

the picture is clear and consistent in the first case, discussion on sentences of specific lengths requires

further elaboration. The shape of the distribution depends on the length of the sequence (Figure 6),

which is expected by the relation between DDm and sentence length. Processing short distances implies

lower cognitive effort and robust statistical evidence suggests that DDm might irrelevant or be canceled

out by other word order principles in short sequences (Ferrer-i-Cancho, 2024; Ferrer-i-Cancho and

Gómez-Rodríguez, 2021; Ferrer-i-Cancho et al., 2022). Then, the varying intensity of the pressure for

minimization yields different distributions in different areas of the sentence length domain, which we

characterized with the following (potentially overlapping) regions (Figure 6, Figure 11 and Figure 12).

• Random linear arrangement. In short sentences (approximately 𝑛 ≤ 6) DDm might be neglectable

or weak enough to be surpassed by other word order principles (Ferrer-i-Cancho, 2024; Ferrer-i-

Cancho and Gómez-Rodríguez, 2021; Ferrer-i-Cancho et al., 2022), resulting in Model 0 (green

tiles in Figure 6, Figure 11 and Figure 12) sometimes being the best one to describe the distribution.

Where it is not Model 0, a model with a single regime is the best one.
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• Single chunk. Up to roughly 13 words the best model is mainly one of 1, 2, or 5 (yellow and

pink tiles in Figure 6, Figure 11 and Figure 12) in most languages. This possibly indicates that

the sentence can be processed as a single chunk when the number of words is small enough, and

dependencies must be highly local to allow for this.

• Two regimes. The bulk of the sentence length domain is characterized by the presence of two-

regime models (red and blue tiles in Figure 6, Figure 11 and Figure 12). In these longer sentences

the burden on STM becomes heavier, and two regimes might emerge from the breaking down of

the sentence into chunks. After a very steep decrease in probability, a long dependency becomes

more likely in order to link a chunk to the previous one.

• No consistent pattern. For long (and rare) sentences no clear pattern appears, as the scarcity of

examples for large sentence lengths introduces variability in the estimation of the best model.

6.1.2 On power laws

When mixing sentences of distinct length, the best model is always a two regime model (Table 7). Across

sentence lengths, the majority of languages have a model with two regimes as the most frequent best

one, and a few languages in both collections show a power-law behavior (Table 8). Nevertheless, setting

a rather high representativeness threshold dramatically reduces evidence for single-regime power-law,

especially in PUD (Figure 7). This is for instance the case with Chinese in both collections. In spite of

this, for Arabic, Indonesian, and Thai the most frequent best model is robustly Model 5 when the SUD

annotation style is used.

Although Chinese has been argued to follow a single-regime power law (Liu, 2007), our findings indicate

that Chinese is better fitted by a two-regime model with an initial power-law regime (Model 6 or 7) when

mixing sentences of any length (Table 7). However, if the representativeness threshold is set to a low

value (Figure 7), a single-regime power law (Model 5) can be retrieved, but such a low threshold casts

doubts on the statistical strength of the best model when mixing sentences of distinct length. In contrast,

the claim of a power law for Chinese is supported clearly for sentences of fixed length, where Model 5

is the most frequent best model across sentence lengths (Table 8).

Overall, two exponential regimes are the most common distribution for both mixed and fixed sentence

lengths. However, what our analysis also proposes is that power laws can well describe the distribution

in the first regime for some languages (mainly non Indo-European) when sentence lengths are mixed,

as well as the distribution for specific sentence lengths for a small subset of them. Importantly, power-

laws can also arise from undersampling, as highlighted by our representativeness analysis (Figure 7). In

previous research it has been argued that power-laws could emerge from mixing sentence lengths in which
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distances are distributed following an exponential curve (Ferrer-i-Cancho and Liu, 2014; Stumpf and

Porter, 2012). Our research invalidates this argument (at least in the scope of our sample of languages),

and identifies instances of another sort of mixing: for Arabic, Indonesian, and Thai in PSUD, mixing

sentence lengths that are individually power-law distributed results in a distribution with two regimes

with a power-law in the 1st regime, suggesting that further investigation is required in this direction.

6.1.3 Tail variability

Plots of the best model against the real data allows one to visually assess the quality of its fit to the data

(Figure 5 for PUD and Figure 15 for PSUD). The best models are able to very well capture the shape of

the bulk of the distribution and the initial bending in all languages. However, they are not always able to

fully capture the variability along the tail of the distribution. To begin with, noise naturally emerges for

longer distances, which belong to rare long sentences. As we explained above, there are lengths for which

only one sentence is observed. Taking this into account, the deviation from the best model could suggest

the possible presence of an unveiled pattern for some languages. We hypothesize the existence of more

than one break-point, implying incremental executions of a “chunk-and-pass” mechanism (Christiansen

and Chater, 2016).

However, introducing more regimes would greatly increase both the complexity of estimation (maximum

likelihood estimation already requires putting particular care in the estimation of 3/4 parameters, see

section 4), and the risk of overfitting the data. Thus, a thorough and rigorous methodology would need

to be employed for such modelling, which should be the subject of future research.

6.2 The homogeneity of the break-point

The break-point values we estimated are largely homogeneous across languages, and average values of

5 (PUD) and 4 (PSUD) words, with small variation. These values are consistent with the literature on

limitations of short term memory: in no language 𝑑∗ exceeds the “magical number” 7 (Miller, 1956),

and the bulk of the values is centered at 4 ± 1, which is generally recognized to be the working memory

limitation on a wide range of tasks (Cowan, 2001).

Nevertheless, some variability can still be observed, especially among the break-points of sentences of

different lengths within a language. In fact, an implicit assumption of 𝐻2 is that the value estimated

globally for a given language is a reliable approximation of the constraint acting at the sentence level,

and this can be verified by looking at the break-points estimated for each given length. We find that for

languages in which 𝐻1 holds (two exponential regimes), the distribution of 𝑑∗ across sentence lengths is

very narrow, and centered around the global value of 𝑑∗. The break-points estimated in Models 6-7 are

more variable, but they still vary in a rather small range compared to the range of variation of the actual
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sentences (Table 3 and Table 4).

The average length in words of simple declarative sentences is 3.7 (from 2.6 in Turkish up to 5.4 in

Mandarin) (Fenk-Oczlon and Pilz, 2021).1. We believe that this variability in the size clauses is captured

by our breakpoint (Figure 8) but this issue should be the subject of future research with a linguistic or

cognitive focus.

6.3 Patterns in probability decay across regimes

Given the large applicability of the two-regime models, we take closer look to the speed of probability

decay. The slopes observed across languages are quite narrowly distributed around the same values

(Figure 9). It is interesting to notice that while the first slope is significantly larger in PSUD, 𝑞2 shows

little variation in the two collections. This suggests that, depending on annotation style, the distribution

of the dependencies within word chunks will change, but beyond word chunks, the chunking mechanism

follows a similar structure. Another interesting pattern concerns the steepness of the first regime with

respect to the second one. When mixing sentences of different lengths the first regime is always steeper

than the second one (Figure 9) and this is virtually always the case even when considering specific

sentence lengths, with a very few exceptions in short sentences (Figure 10). This provides additional

support for the “chunk-and-pass” paradigm (Christiansen and Chater, 2016). An explanation for that

pattern could be that, when memory limits are approached in long enough sentences, the current chunk

needs to be closed, and a new longer dependency becomes more likely in order to link the forthcoming

chunk (thus reducing the speed of probability decay). The two regimes (and in particular Model 4) may

be found even if the real distribution is Model 0, given their similar BIC scores (Figure 13). However,

Model 4 could only mimic a linear curve (Model 0) if the second regime was steeper than the first one.

6.4 The best model versus the optimality of syntactic dependency distances

In section 6.1, we have described how the shape of the distribution varies depending on sentence length.

Here, we aim to understand the interplay with different degrees of pressure for DDm for long versus short

sentences. Previous research has pointed out at how ⟨Ω⟩ is smaller in short sentences, likely due to DDm

being neglected or canceled out by other word order principles (Ferrer-i-Cancho, 2024; Ferrer-i-Cancho

and Gómez-Rodríguez, 2021; Ferrer-i-Cancho et al., 2022). We provide additional evidence for this

phenomenon by unravelling a direct correspondence between sentences where ⟨Ω⟩ is close to 0, and

those in which the best model is Model 0 (Table 12). Moreover, we observe a relation between the

intensity of DDm and the best model for the distribution. Namely, as pressure for minimization increases

with sentence length, the best model changes (Figure 11 and Figure 12). While correlation does not

1The data can be found in the Supplementary Material (Sheet 1)

Glottometrics 58, 2025 67



Petrini and Ferrer-i-Cancho The distribution of syntactic dependency distances

imply causation, it is crucial to understand that both the pressure for DDm and the best model for the

distribution of syntactic dependency distances are not homogeneous through sentence length. Thus,

distances belonging to sentences of different length are subject to different pressures, and this should be

taken into account when trying to model the distribution. In particular, these different levels of pressure

could yield different mechanisms. Indeed, the more complex distributions – those with two regimes –

tend to emerge for long enough sentence length, when the pressure for DDm is stronger, likely calling

for a structured processing mechanism.

6.5 The effect of annotation style

So far we have observed commonalities and differences between PUD and PSUD. Overall, the main

qualitative results are robust to annotation style, supporting the soundness of the observed patterns, but

some differences emerge. The discussion on the origins of such differences is open, and is connected

to the fundamental question of whether an annotation style is a more accurate representation of our

brain’s functioning or the linguistic processing than the other, or whether different styles simply mirror

different aspects of this functioning or processing. While providing a rather descriptive account of such

differences, we partly attempt to address this question.

6.5.1 The shape of the distribution

The first main point concerns the very high consistency in the best estimated models (Figure 8). However,

there are a few exceptions, which we classified in two types: differences in right truncation, and in the

distribution in the first regime. The latter is clearly of greater interest and it concerns two languages,

Japanese and Indonesian, both having Models 3-4 as the best model in PUD, and Model 7 in PSUD,

but showing a very different behaviour. For Japanese, the best models estimated on specific sentence

lengths and by mixing all sentence lengths are highly consistent within each collection, and in both cases

the break-point value is 𝑑∗ = 6. This suggests a real difference in probability decay within a chunk

depending on the chosen annotation guidelines, but also conveys the concreteness of the quantified limit

on memory for such language. On the other hand, for Indonesian we find mixed evidence, both in terms

of estimated break-point, which goes from 𝑑∗ = 3 in PUD to 𝑑∗ = 7 in PSUD, and in terms of best model

for fixed sentence lengths (which is consistently a one-regime power-law in PSUD). In fact, this takes

us to one of the main differences between annotation styles (Figure 7): while in PUD the only language

showing some evidence for a single power-law regime for fixed sentence lengths is Arabic, in PSUD

we have three languages strongly supporting the reality of such distribution. For Arabic, Indonesian,

and Thai, the two regimes observed for mixed sentence lengths contradict what is found when sentence

lengths are analysed in isolation. This seems to reflect Simpson’s paradox, a phenomenon according to

which a statistical trend disappears when single groups are considered, and suggests that there is some
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variability left to explain.

6.5.2 The break-point

We have seen in Figure 8 how the break-points estimated in both collections cover the same portion of

domain, ranging from 3 to 7. However, while in PUD there is no settling around a particular value, in

PSUD 𝑑∗ is nearly uniform at 𝑑∗ = 4, especially within Models 3-4. This raises the following questions:

is this regularity given by chance? Or does it mirror a better ability of SUD to capture syntactic relations

as formed by our minds? Given that – besides individual differences – the overall structure of the brain

is assumed to be the same for all humans, the constraint on memory is expected to be uniform across

languages (hence the motivation for 𝐻2). Thus, one could speculate that SUD annotation style is actually

more capable of unveiling this uniformity, that is assumed to exist.

6.5.3 Dependency distance minimization

SUD guidelines have been found to lead to shorter dependency distances (Ferrer-i-Cancho et al., 2022;

Osborne and Gerdes, 2019; Yan and Liu, 2021). When dependency distances are conveniently normalized

with respect to the gap between the random baseline and the minimum baseline, SUD reflects distances

that are closer to optimality (Ferrer-i-Cancho et al., 2022). Such ability of SUD to reflect dependency

distance minimization of effects is confirmed by our findings. In fact, despite predicting a power-law

decay in the first regime for two more languages compared to PUD, 𝑞1 is significantly higher in PSUD

(Figure 9). This entails a faster decay in probability within the chunk, related to the predominance of

short local dependencies in PSUD. Moreover, the values of Ω computed in the PSUD collection are

generally larger (tiles in Figure 12 (b) are darker than in Figure 11 (b)), confirming a stronger degree of

optimization of dependency distances in the SUD framework (Ferrer-i-Cancho et al., 2022).

7 Conclusion

Two decades after the first observations on the peculiar shape of the distribution of syntactic dependency

distances (Ferrer-i-Cancho, 2004), some new light has been shed. A crucial finding is that the probability

of observing a dependency – independently of the length of the sentence it belongs to – is best described

by a double-regime model. Furthermore, the finding also holds at a finer-grained level, distinctively

considering each sentence length. In this setting, for the great majority of languages a double-regime

model is the most frequent one, while the few remaining languages show a power-law decay as the most

frequent, partly in accordance with what has been found concerning a Chinese treebank, where however

sentences of mixed lengths were analysed (Liu, 2007). Furthermore, the break-point between the two

regimes estimated globally for each language varies in a small range (3 ≤ 𝑑∗ ≤ 7), which becomes even
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narrower when only languages in which 𝐻1 holds are considered. In fact, 𝐻2 seems to be related to the

probability distribution observed in the first regime, leading to the identification of a group of languages

where probability follows a two-regime exponential decay (𝐻1), and within which the break-point is

very similar (𝐻2). This group is mainly populated by Indo-European languages. However, languages

from this family are over-represented in our sample, and other interesting patterns could emerge if a

larger group of languages from other families where analysed. These considerations hold independently

of annotation style, but it has not escaped our attention that in PSUD values of 𝑑∗ for such group are

almost uniform at 4, a widely accepted quantification of the constraint on short term memory (Cowan,

2001). This could, in our opinion, reflect a higher sensitivity of SUD annotation style to the way in

which our minds create and process language, bringing to light a “universal” constraint which is not

language dependent. Another general pattern emerged is the relation between the speeds of the decays,

whereas probability in the first regime is always faster than in the second one. As already pointed out, this

result may look paradoxical: if cognitive pressure induces a decay in probability as syntactic dependency

distance increases, why does such a decay slows down beyond the breakpoint? (Ferrer-i-Cancho, 2017)?

In the framework of language processing, these findings provide strong support for the “chunk-and-pass”

mechanism (Christiansen and Chater, 2016). In fact, the presence of these two different regimes could

actually mirror the two different speeds at which probability decays within a chunk and beyond it. In

physical terms, the true units of measurement of distance may change: within the word chunk the unit

of distance are words whereas, beyond the word chunk, the actual distance may be chunks in the hidden

space of incremental processing of the sentence. The breakpoint and the slow down after the breakpoint

may arise because we have imposed the use of words as unit of measurement independently of the stage

of syntactic parsing. In our view, this appears to be the most reasonable and pertinent explanation for

the observed systematic decrease in the strength of DDm, but we do not exclude that other explanations

could as well be plausible. Future work could further investigate the distribution in the second regime,

exploring different combinations of exponential and power-law decay. Then, the possible presence of

more than one break-point could be explored. Importantly, to understand the extent to which the observed

phenomena can be considered universal, the same analysis shall be performed on a wider set of languages.
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A Model derivation

Here we detail the mathematical derivation of the non-standard models in Section 2.

Model 0.1 We consider a general model for sentences of varying length, defined as
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where 𝑝(𝑑 |𝑛) is the conditional probability of 𝑑 given that the sentence length has 𝑛 words, 𝑝(𝑛) is

the proportion of sentences having length 𝑛, and min(𝑛) and max(𝑛) are the minimum and maximum

observed values of 𝑛 in the sample. By definition, 𝑝(𝑑 |𝑛) satisfies two conditions, i.e. 𝑝(𝑑 |𝑛) = 0 when

𝑑 ∉ [1, 𝑛) and
𝑛−1∑︁
𝑑=1

𝑝(𝑑 |𝑛) = 1.

Thanks to these two conditions, it is easy to see that 𝑝(𝑑) is properly normalized, that is

𝑚𝑎𝑥 (𝑛)−1∑︁
𝑑=1

𝑝(𝑑) =

𝑚𝑎𝑥 (𝑛)−1∑︁
𝑑=1

𝑚𝑎𝑥 (𝑛)∑︁
𝑛=𝑚𝑖𝑛(𝑛)

𝑝(𝑑 |𝑛) 𝑝(𝑛)

=

𝑚𝑎𝑥 (𝑛)∑︁
𝑛=𝑚𝑖𝑛(𝑛)

𝑝(𝑛)
𝑛−1∑︁
𝑑=1

𝑝(𝑑 |𝑛)

= 1

By setting 𝑝(𝑑 |𝑛) according to the null hypothesis of a random shuffling of the words of a sentence of 𝑛

words (1), which satisfies the two conditions above, we obtain

𝑝(𝑑) =
𝑚𝑎𝑥 (𝑛)∑︁
𝑛=𝑚𝑖𝑛(𝑛)

𝑛 − 𝑑(𝑛
2

) 𝑝(𝑛).

Model 2 We define the cumulative distribution of Model 1 as

𝑃1(𝑑) =
𝑑∑︁

𝑑′=1

𝑝1(𝑑′).

where 𝑝1(𝑑) is defined as in 2. Model 2 is derived via renormalization of Model 1 after right-truncation,

that is

𝑝2(𝑑) =
𝑝1(𝑑)

𝑃1(𝑑𝑚𝑎𝑥)
,

where

𝑃1(𝑑𝑚𝑎𝑥) =

𝑑𝑚𝑎𝑥∑︁
𝑑=1

𝑞(1 − 𝑞)𝑑−1

= 1 − (1 − 𝑞)𝑑𝑚𝑎𝑥 .

Hence

𝑝2(𝑑) =
𝑞(1 − 𝑞)𝑑−1

1 − (1 − 𝑞)𝑑𝑚𝑎𝑥
.

Double-regime models Now we use 𝑝1(𝑑) to refer to the definition of 𝑝(𝑑) for 𝑑 ≤ 𝑑∗ and 𝑝2(𝑑) to

refer to the definition of 𝑝(𝑑) for 𝑑 ≥ 𝑑∗. The definition of Models 3, 4, 6, 7 follows the template

𝑝(𝑑) =
{
𝑝1(𝑑) = 𝑐1 𝑓1(𝑑) if 𝑑 ≤ 𝑑∗

𝑝2(𝑑) = 𝑐2 𝑓2(𝑑) if 𝑑∗ ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥 ,
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For models 3 and 6, one simply sets 𝑑𝑚𝑎𝑥 to ∞. Thus, the assumption 𝑝1(𝑑) = 𝑝2(𝑑) yields

𝑐2 = 𝜏𝑐1

with

𝜏 =
𝑓1(𝑑)
𝑓2(𝑑)

.

Recalling the definitions of the models (Table 1), it is easy to see that, for models 3 and 4,

𝜏 =
(1 − 𝑞1)𝑑

∗−1

(1 − 𝑞2)𝑑∗−1 .

whereas for models 6 and 7,

𝜏 =
𝑑∗

−𝛾

(1 − 𝑞)𝑑∗−1 .

Let us derive the normalization factor 𝑐1 for Models 3, 4, 6, 7 with the help of

𝑆1 =

𝑑∗∑︁
𝑑=1

𝑓1(𝑑)

𝑆2 =

𝑑𝑚𝑎𝑥∑︁
𝑑=𝑑∗

𝑓2(𝑑).

The normalization condition
𝑑𝑚𝑎𝑥∑︁
𝑑=1

𝑝(𝑑) = 1

yields

(11) 𝑐1 =
1

𝑆1 + 𝜏𝑆2
.

For Models 3 and 4, 𝑆1 is

𝑆1 =

𝑑∗−1∑︁
𝑑′=0

(1 − 𝑞1)𝑑
′
=
1 − (1 − 𝑞1)𝑑

∗

𝑞1
.

𝑆2 depends on the truncation point. For Model 3, the assumption 𝑞 > 0 (thus lim𝑑𝑚𝑎𝑥→∞(1−𝑞)𝑑𝑚𝑎𝑥 = 0)

produces

𝑆2 =

∞∑︁
𝑑′=𝑑∗

(1 − 𝑞2)𝑑
′

(1 − 𝑞2)𝑆2 = 𝑆2 − (1 − 𝑞2)𝑑
∗ + (1 − 𝑞2)∞

𝑆2 =
(1 − 𝑞2)𝑑

∗

𝑞2
(12)

By substituting 𝑆1, 𝑆2 and 𝜏 in 11, 𝑐1 for Model 3 becomes

𝑐1 =
𝑞1𝑞2

𝑞2 + (1 − 𝑞1)𝑑∗−1(𝑞1 − 𝑞2)

after some algebra.
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In Model 4, probabilities are restricted up to 𝑑𝑚𝑎𝑥 , thus

(13) 𝑆2 =

𝑑𝑚𝑎𝑥−1∑︁
𝑑′=𝑑∗

(1 − 𝑞2)𝑑
′
=

(1 − 𝑞2)𝑑
∗ − (1 − 𝑞2)𝑑𝑚𝑎𝑥

𝑞2
.

Again, plugging 𝑆1, 𝑆2, and 𝜏 into 11 produces 𝑐1 for Model 4, that is

𝑐1 =
𝑞1𝑞2

𝑞2 + (1 − 𝑞1)𝑑∗−1(𝑞1 − 𝑞2 − 𝑞1(1 − 𝑞2)𝑑𝑚𝑎𝑥−𝑑∗+1)

after some algebra.

For the second pair of double-regime models (Models 6 and 7), combining a zeta and a geometric

distribution, 𝑆1 is

𝑆1 =

𝑑∗∑︁
𝑑=1

𝑑−𝛾 = 𝐻 (𝑑∗, 𝛾),

while the second regime is shared with Models 3-4, so that 𝑆2 corresponds to 12 for Model 6 and to 13

for Model 7. Then, the normalization factors are obtained again through 11, so that for Model 6

𝑐1 =
𝑞

𝑞𝐻 (𝑑∗, 𝛾) + 𝑑∗−𝛾 (1 − 𝑞) ,

while for Model 7

𝑐1 =
𝑞

𝑞𝐻 (𝑑∗, 𝛾) + 𝑑∗−𝛾 (1 − 𝑞 − (1 − 𝑞)𝑑𝑚𝑎𝑥−𝑑∗+1)
after some algebra.
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B Log-likelihood functions

In our setting, the log-likelihood of a model is

L = log
𝑁∏
𝑖=1

𝑝(𝑑𝑖) =
𝑁∑︁
𝑖=1

log 𝑝(𝑑𝑖) =
𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑), log 𝑝(𝑑).

Next we derive the log-likelihood functions for each model with the help of Table 1.

For Model 0.0, where 𝑑𝑚𝑎𝑥 is the only free parameter, we have

L =

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑) log
(
2(𝑑𝑚𝑎𝑥 + 1 − 𝑑)
𝑑𝑚𝑎𝑥 (𝑑𝑚𝑎𝑥 + 1)

)
=

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑)
[
log

(
2

𝑑𝑚𝑎𝑥 (𝑑𝑚𝑎𝑥 + 1)

)
+ log(𝑑𝑚𝑎𝑥 + 1 − 𝑑)

]
= 𝑁 log

(
2

𝑑𝑚𝑎𝑥 (𝑑𝑚𝑎𝑥 + 1)

)
+𝑊,

where

𝑁 =

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑)

𝑊 =

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑) log(𝑛 − 𝑑).

For Model 0.1, in which the observed sentence lengths are supplied and there is no free parameter, we

have

L =

𝑚𝑎𝑥 (𝑛)∑︁
𝑛=𝑚𝑖𝑛(𝑛)

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑) log 2(𝑛 − 𝑑)
𝑛(𝑛 − 1)

=

𝑚𝑎𝑥 (𝑛)∑︁
𝑛=𝑚𝑖𝑛(𝑛)

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑)
[
log

2

𝑛(𝑛 − 1) + log(𝑛 − 𝑑)
]

=

𝑚𝑎𝑥 (𝑛)∑︁
𝑛=𝑚𝑖𝑛(𝑛)

[
𝑁𝑛 log

2

𝑛(𝑛 − 1) +𝑊𝑛

]
where

𝑊𝑛 =

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑) log(𝑛 − 𝑑)

𝑁𝑛 =

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑)

in sentences of length 𝑛. For the geometric models, we start from the derivation of the right-truncated
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version, namely Model 2

L =

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑) log 𝑞(1 − 𝑞)𝑑−1
1 − (1 − 𝑞)𝑑𝑚𝑎𝑥

=

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑)
[
log

𝑞

1 − (1 − 𝑞)𝑑𝑚𝑎𝑥
+ (𝑑 − 1) log(1 − 𝑞)

]
= 𝑁 log

𝑞

1 − (1 − 𝑞)𝑑𝑚𝑎𝑥
+ (𝑀 − 𝑁) log(1 − 𝑞),

where 𝑀 =
∑
𝑑 = 1𝑚𝑎𝑥 (𝑑) 𝑓 (𝑑) 𝑑. Then, the log-likelihood function of Model 1 as a particular case of

that of Model 2 in which 𝑑𝑚𝑎𝑥 = ∞, i.e.

L = 𝑁 log 𝑞 + (𝑀 − 𝑁) log(1 − 𝑞)

since 𝑞 > 0 and thus lim𝑑𝑚𝑎𝑥→∞(1 − 𝑞)𝑑𝑚𝑎𝑥 = 0. For the two-regime geometric models, we start from

the log-likelihood of Model 4, i.e.

L =

𝑑∗∑︁
𝑑=1

𝑓 (𝑑) log
[
𝑐1(1 − 𝑞1)𝑑−1

]
+

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=𝑑∗+1

𝑓 (𝑑) log
[
𝑐2(1 − 𝑞2)𝑑−1

]
=

𝑑∗∑︁
𝑑=1

𝑓 (𝑑) [log 𝑐1 + (𝑑 − 1) log(1 − 𝑞1)] +
𝑚𝑎𝑥 (𝑑)∑︁
𝑑=𝑑∗+1

𝑓 (𝑑) [log 𝑐2 + (𝑑 − 1) log(1 − 𝑞2)]

= 𝑁∗ log 𝑐1 + (𝑀∗ − 𝑁∗) log(1 − 𝑞1) + (𝑁 − 𝑁∗) log 𝑐2 +

(𝑀 − 𝑀∗ − 𝑁 + 𝑁∗) log(1 − 𝑞2)

= 𝑁∗ log 𝑐1 + (𝑁 − 𝑁∗) log 𝑐2 + (𝑀∗ − 𝑁∗) log 1 − 𝑞1
1 − 𝑞2

+ (𝑀 − 𝑁) log(1 − 𝑞2)

where

𝑀∗ =

𝑑∗∑︁
𝑑=1

𝑓 (𝑑) 𝑑

𝑁∗ =

𝑑∗∑︁
𝑑=1

𝑓 (𝑑),

while 𝑐1 and 𝑐2 are defined as explained in Section 2 for Model 3 and 4. Thus, the log-likelihood

functions of Model 3 and Model 4 only differ in the computation of 𝑐1 and 𝑐2. For the right truncated

power-law distribution, namely Model 5,

L =

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑) log 𝑑−𝛾

𝐻 (𝑑𝑚𝑎𝑥 , 𝛾)

=

𝑚𝑎𝑥 (𝑑)∑︁
𝑑=1

𝑓 (𝑑) [−𝛾 log 𝑑 − log𝐻 (𝑑𝑚𝑎𝑥 , 𝛾)]

= −𝛾𝑀 ′ − 𝑁 log𝐻 (𝑑𝑚𝑎𝑥 , 𝛾),
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where 𝑀 ′ =
∑𝑚𝑎𝑥 (𝑑)

𝑑=1 𝑓 (𝑑) log(𝑑). Finally, for Models 6 and 7, we start from the derivation of Model 7,

L =

𝑑∗∑︁
𝑑=1

𝑓 (𝑑) log(𝑐1𝑑−𝛾) +
𝑚𝑎𝑥 (𝑑)∑︁
𝑑=𝑑∗+1

𝑓 (𝑑) log
[
𝑐2(1 − 𝑞)𝑑−1

]
=

𝑑∗∑︁
𝑑=1

𝑓 (𝑑) [log 𝑐1 − 𝛾 log(𝑑)] +
𝑚𝑎𝑥 (𝑑)∑︁
𝑑=𝑑∗+1

𝑓 (𝑑) [log 𝑐2 + (𝑑 − 1) log(1 − 𝑞)]

= 𝑁∗ log 𝑐1 − 𝛾𝑀 ′∗ + (𝑁 − 𝑁∗) log 𝑐2 + (𝑀 − 𝑀∗ − 𝑁 + 𝑁∗) log(1 − 𝑞),

while 𝑐1 and 𝑐2 are defined as explained in Section 2 for Model 6 and 7.

C Model selection validation

C.1 Artificial data generation

In the following, let 𝑝𝑥 (𝑑) be the probability of 𝑑 according to Model x. The parameter values used

to generate each model are reported in Table 14, while sample size is 𝑁 = 104 for each model. For

right-truncated models sentence length is set to 𝑛 = 20, and the maximum distance is set to 𝑑𝑚𝑎𝑥 = 19.

Then Model 0.0 is equivalent to Model 0 with 𝑛 = 20. We choose 𝛾 = 1.6 because it has been obtained

from fitting a right-truncated Zeta distribution to a Chinese treebank (Liu, 2007).

Table 14: Parameter values used to generate artificial samples. Here Model 0 is the same as Model 0.0.

Model 𝑑𝑚𝑎𝑥 𝑞 𝑞1 𝑞2 𝑑∗ 𝛾

0 19 - - - - -
1 - 0.2 - - - -
2 19 0.2 - - - -
3 - - 0.5 0.1 4 -
4 19 - 0.5 0.1 4 -
5 19 - - - - 1.6
6 - 0.2 - - 4 1.6
7 19 0.2 - - 4 1.6

Models 1 and 2 For the geometric distribution and its right-truncated version, namely Model 1 and

Model 2, we use Dagpunar’s fast inversion method (Dagpunar, 1988). For Model 1, a random distance

𝑑 is obtained by producing a random uniform deviate 𝑥 and then calculating

𝑑 = 1 +
⌊
log 𝑥

𝜆

⌋
,

where 𝜆 = log(1− 𝑞), and 𝑞 is the parameter of the desired geometric distribution. For Model 2, a value

of 𝑑 is produced until 𝑑 ≤ 𝑑𝑚𝑎𝑥 .

Model 5 For Model 5, we employed the algorithm proposed by Devroye to efficiently generate a random

deviate from a zeta distribution (Devroye, 1986), adapting it to allow for right-truncation. The algorithm

is called one or more times until a value of 𝑑 such that 𝑑 ≤ 𝑑𝑚𝑎𝑥 is obtained.
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Model 0 and two-regime models For the sake of simplicity, random samples of Model 0 and of

the two-regime models, namely Models 3, 4, 6, and 7, are generated using a tabular inversion method

(Devroye, 1986; Muller, 1958). This method generates artificial distances in a pre-specified range,

namely 𝑑 ∈ [1, 𝛿]. Thus, in order to simulate Models 3 and 6 – which do not have a right-truncation –

we set 𝛿 = 106 to ensure that 𝑝(𝑑) ≈ 0 for 𝑑 ≥ 𝛿, while for Models 0, 4 and 7 we have 𝛿 = 𝑑𝑚𝑎𝑥 = 19.

For simplicity, the method is implemented through binary search. Hence, a random deviate is produced

in time 𝑂 (log 𝛿).

C.2 Results

For each model, the best model yields a good visual fit to each artificially generated sample Figure 14.

Indeed, the real underlying distribution is identified for every artificial random sample (Table 15 and

Figure 13). See Figure 13 for the magnitude of the difference in BIC score between a given model and

the best model (the model that minimizes BIC). The BIC of the double-regime models is always close

to the BIC of the best model. The reason resides in the greater flexibility allowed by the existence of the

break-point, which is however compensated by the penalty imposed on the additional parameter by the

BIC score 9. Another concern could rise from the fitting of the random sample of Model 0, in which

the BIC score of Model 4 is not much larger than that of the best model. Indeed, two geometric regimes

could mimic the linearity of Model 0, but only in the case in which the second regime decays faster

than the second. The values of the parameters estimated by maximum likelihood for each artificially

generated random sample are shown in Table 16. See Table 17 for a comparison of the estimated values

against the real values used to generate the data for each of the artificial samples. The error between

the real values and the optimal parameters is either 0 or very small. In particular, maximum likelihood

seems prone to underestimate the real value rather than the opposite.

Table 15: BIC scores on artificial random samples. Each row corresponds to a random sample generated by a given model.

In each row, we show first the name of the true model and then we show the AIC values of each candidate model. The true

Model 0 is Model 0 that is equivalent to Model 0.1 here. The candidate Model 0 is Model 0.0.

True model Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

0 55570.65 57527.90 55881.07 55750.98 55615.79 56724.85 55963.35 55697.17
1 60974.42 50037.40 50040.08 50049.99 50056.13 53256.86 50054.30 50057.24
2 51569.46 48995.12 48739.88 48801.18 48755.09 50086.11 48993.61 48757.98
3 76657.57 54995.13 55004.33 51553.49 51561.32 52694.62 51681.76 51689.79
4 51638.78 47122.05 46967.51 45359.06 44595.90 44716.30 44818.89 44685.95
5 49460.37 39609.04 39602.60 37251.07 37076.27 36864.76 36937.93 36881.25
6 61658.20 39436.89 39446.10 37196.76 37204.83 37684.75 37133.38 37141.30
7 48909.08 38217.08 38217.08 36343.48 36242.39 36270.85 36239.71 36175.27
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Figure 13: BIC differences in artificial random samples. The BIC difference is the difference between the BIC of the model

and the BIC of the best model (the model that minimizes the BIC for the sample). The red vertical line indicates the best model

according to BIC.
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Figure 14: 𝑝(𝑑), the probability that a dependency link is formed between words at distance 𝑑 according to the best model

for artificially generated samples.

D Model selection results

We here report the results of model selection when sentences of any length are mixed for each language.

See Table 18 and Table 20 for the AIC scores for PUD and PSUD, respectively; see Table 19 and Table 21

for the corresponding AIC differences. The AIC difference of a model is defined as the difference of its

AIC and the AIC of the best model (the model that minimizes AIC) (Anderson and Burnham, 2004). The

parameters estimated by maximum likelihood are shown in Table 22 for PUD and in Table 23 for PSUD.

Finally, see Figure 15 for the best model fitted to the empirical distribution for languages in PSUD.
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Table 18: AIC scores of each model in the PUD collection on sentences of mixed lengths. Here Model 0 refers to Model 0.1.

Language Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Arabic 84577 55188 55190 52011 52012 52264 51866 51864

Chinese 86281 68121 68123 65826 65827 67025 65737 65738

Czech 68424 48729 48731 47872 47872 49499 48212 48214

English 85821 60122 60124 59402 59402 62649 60055 60056

Finnish 52893 38423 38425 37955 37956 38921 37927 37928

French 109197 71748 71750 69420 69418 72291 70944 70946

German 86626 68510 68512 66699 66700 68821 66955 66957

Hindi 107388 83075 83077 75832 75828 76676 75788 75782

Icelandic 73752 50242 50244 49411 49413 51252 49716 49718

Indonesian 76351 50676 50678 48875 48876 49596 48916 48917

Italian 104223 68313 68315 66370 66369 69289 67786 67788

Japanese 135512 93746 93748 85222 85221 87112 86524 86525

Korean 64173 50365 50367 45474 45472 45647 45337 45332

Polish 66255 45103 45105 43851 43852 44719 43956 43958

Portuguese 100042 67213 67215 65361 65361 68010 66557 66559

Russian 70474 47879 47881 46750 46751 48291 47201 47203

Spanish 101194 67353 67355 65377 65376 67934 66641 66643

Swedish 75639 53807 53809 53135 53136 55623 53633 53635

Thai 108081 69553 69555 65717 65718 66242 65519 65521

Turkish 62864 51439 51441 47362 47358 47697 47250 47245
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Table 19: AIC differences of each model in the PUD collection on sentences of mixed lengths. Here Model 0 refers to Model

0.1.

Language Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Arabic 32712.96 3323.95 3325.95 146.57 147.28 399.60 1.44 0.00

Chinese 20544.43 2383.68 2385.68 88.77 90.07 1288.62 0.00 0.72

Czech 20552.34 857.52 859.51 0.00 0.70 1627.44 340.07 341.97

English 26419.25 720.65 722.64 0.00 0.63 3247.77 652.91 654.90

Finnish 14965.50 496.10 498.00 27.96 29.28 993.94 0.00 1.02

French 39779.35 2329.86 2331.86 1.94 0.00 2873.31 1526.42 1528.33

German 19927.31 1811.19 1813.19 0.00 1.49 2122.61 256.63 258.34

Hindi 31605.72 7292.04 7294.03 49.53 45.49 893.65 5.61 0.00

Icelandic 24340.78 831.13 833.13 0.00 1.94 1841.66 305.52 307.52

Indonesian 27476.04 1800.38 1802.38 0.00 1.08 721.10 41.17 41.86

Italian 37854.79 1944.06 1946.06 1.10 0.00 2920.54 1417.74 1419.67

Japanese 50290.71 8524.56 8526.56 0.58 0.00 1890.84 1302.96 1303.51

Korean 18840.12 5032.98 5034.98 141.29 139.91 314.13 4.31 0.00

Polish 22403.20 1251.25 1253.25 0.00 0.73 867.34 104.69 106.27

Portuguese 34681.44 1852.22 1854.22 0.00 0.34 2649.16 1196.46 1198.33

Russian 23723.74 1129.28 1131.28 0.00 1.37 1540.80 451.36 453.32

Spanish 35817.93 1976.75 1978.74 1.07 0.00 2557.41 1264.87 1266.59

Swedish 22503.61 671.54 673.54 0.00 0.88 2487.59 497.78 499.75

Thai 42561.20 4033.29 4035.29 197.05 198.82 722.50 0.00 1.23

Turkish 15618.79 4193.97 4195.96 117.05 112.74 452.16 5.51 0.00
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Table 20: AIC scores of each model in the PSUD collection on sentences of mixed lengths. Here Model 0 refers to Model

0.1.

Language Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Arabic 83964 49718 49720 45461 45461 45444 45249 45248

Chinese 86004 66658 66660 63187 63188 63852 63043 63043

Czech 67743 43660 43662 42048 42049 42711 42164 42166

English 84875 51868 51870 49860 49860 50895 50293 50295

Finnish 52389 35247 35249 34450 34451 35057 34434 34436

French 108313 62309 62311 57458 57458 58294 58037 58036

German 85580 64289 64291 62110 62111 63642 62229 62230

Hindi 106846 79001 79003 68777 68760 69540 68495 68483

Icelandic 72807 42153 42155 39927 39929 40396 40000 40002

Indonesian 75765 45212 45214 41927 41928 42005 41809 41808

Italian 103370 59445 59447 55354 55354 56373 56039 56040

Japanese 135293 88560 88562 72667 72667 72316 71831 71831

Korean 64065 49797 49799 44509 44508 44683 44366 44364

Polish 65708 40765 40767 38674 38676 39020 38697 38698

Portuguese 99155 58440 58442 54381 54381 55150 54846 54846

Russian 69999 43597 43599 41455 41457 41963 41541 41543

Spanish 100350 58907 58909 54617 54615 55352 55105 55103

Swedish 74683 46288 46290 44584 44586 45399 44815 44817

Thai 107549 63835 63837 57879 57881 57879 57564 57565

Turkish 62784 50771 50773 46448 46442 46728 46325 46318
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Table 21: AIC differences of each model in the PSUD collection on sentences of mixed lengths. Here Model 0 refers to

Model 0.1.

Language Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Arabic 38715.46 4469.92 4471.92 212.61 213.36 196.35 0.49 0.00

Chinese 22961.93 3615.17 3617.16 144.40 145.21 809.83 0.67 0.00

Czech 25695.55 1612.08 1614.08 0.00 1.23 663.54 116.10 117.76

English 35015.25 2008.17 2010.17 0.09 0.00 1034.96 433.57 435.32

Finnish 17954.96 812.85 814.84 15.62 16.93 622.93 0.00 1.41

French 50855.16 4851.44 4853.44 0.05 0.00 836.35 579.48 578.26

German 23469.70 2179.07 2181.07 0.00 1.12 1532.51 118.75 120.29

Hindi 38363.24 10518.04 10520.03 294.32 277.30 1056.95 11.70 0.00

Icelandic 32879.81 2225.42 2227.42 0.00 1.79 468.28 72.30 74.23

Indonesian 33956.92 3404.16 3406.16 119.39 119.95 196.85 1.41 0.00

Italian 48016.12 4091.05 4093.05 0.00 0.83 1019.71 685.68 686.27

Japanese 63462.28 16729.23 16731.23 836.09 836.29 485.06 0.28 0.00

Korean 19701.40 5432.90 5434.90 145.71 144.65 319.57 1.91 0.00

Polish 27034.25 2090.57 2092.57 0.00 1.52 346.04 23.00 23.88

Portuguese 44774.69 4059.49 4061.49 0.00 0.29 769.23 465.71 465.70

Russian 28543.92 2141.67 2143.67 0.00 1.47 508.13 86.14 87.86

Spanish 45735.15 4292.48 4294.48 2.28 0.00 736.75 490.45 487.74

Swedish 30099.05 1703.55 1705.55 0.00 1.64 815.39 231.31 233.16

Thai 49985.45 6271.66 6273.66 315.48 317.16 315.43 0.00 1.29

Turkish 16466.09 4453.49 4455.47 129.96 124.00 410.41 7.45 0.00
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Figure 15: 𝑝(𝑑), the probability that a dependency link is formed between words at distance 𝑑 according to the data and the

best model for every language in PSUD.
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E The distribution of dependency distances for characteristic sentence

lengths.

See Figure 16 (a-b) for the distributions in PUD, for modal and mean sentence length respectively; see

Figure 17 (a-b) for PSUD. As mean sentence length, we use the results of rounding the actual mean

sentence length to the nearest integer.
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(a) Modal sentence length.
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(b) Mean sentence length.

Figure 16: 𝑝(𝑑), the probability that linked words are at distance 𝑑 in sentences of modal (a) and mean (b) length for each

language in PUD. Mode and mean are shown next to the respective language label. The dashed line shows the probability

according to Model 0 (1). Points where 𝑝(𝑑) = 0 are not shown.
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Figure 17: 𝑝(𝑑), the probability that linked words are at distance 𝑑 in sentences of modal (a) and mean (b) length for each

language in PSUD. The format is the same as in Figure 16.
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